The Snap SALT command
V1.03
Syntax:

Snap [path] –class= –convert –fileprefix= –loadfn[=] –makedir –noprompt –pattern= –show[=] –vars[=] –version
In the following text object refers to any APL object, either code (function, op) or data (including all namespaces).
Snap by default saves all new objects in the current namespace to the path specified as argument and saves modified objects to their proper location. It returns the list of the names of the objects that have been saved, if any. If the path is not specified then the current workdir is used.
Snap, in its present state, cannot save everything and variables in #, function refs, idioms and instances cannot be saved.

Snap uses <Save> to store objects.

Procedure

Snap first finds the list of all objects and from those the ones that can be saved. It then determines which ones have been modified or are new. If any of them needs saving or if it cannot determine if they need to be saved (e.g. non scripted namespaces) then each one of these object is saved using <Save>.

To find out which object needs to be saved SALT marks objects (functions and namespaces) with special tags when it loads them or when they are first saved. Because # variables cannot be tagged they cannot be saved in canonical form on file. Variables in namespaces, on the other hand, can be saved as part of the namespace without any problem as long as they don’t contain anything ‘illegal’ like forms, []ORs, etc.
Non-scripted namespaces can be saved by making them into a script but tagging information cannot be retained and Snap will always overwrite (given permission) the existing file where they reside. Snap is non destructive in that respect and unless told otherwise (see below) it will keep the original non-scripted form even though it writes a source for them.
Alternate behaviour

Snap accepts a series of modifiers to alter its operation.

Selecting the objects to save

It may be desirable to save only a subset of the workspace, for example only the functions or names starting with a specific pattern.

To select specific name classes (e.g. functions or D-ops) you use the -class= modifier. It takes a value of one or more classes. Acceptable classes are 3=all functions, 4=all ops and 9=all namespaces. Finer numbers are also accepted, e.g. 4.1 for trad ops or 9.5 for interfaces.
To select objects following a specific patter you use the –pattern= modifier. It takes a string where ‘*’ means “any number of chars”. At the moment the pattern matching is restricted to strings ending in ‘*’ and stars are ignored, effectively meaning “only names starting with the string given before the star” as in ‘util*’
.
Both can be combined and the following with save all namespaces starting with ‘GUI’:

[]SE.SALT.Snap ‘/ws/utils -class=9.1 -pattern=GUI*’

Both also accept the character ‘~’ in the first position to exclude specified class or pattern, e.g.

[]SE.SALT.Snap ‘/ws/utils -pattern=~GUI*’

will save all objects NOT starting with ‘GUI’.

These modifiers allow you to save various subsets of functions/namespaces to different locations. Two or more different workspaces can use the same subset which can be updated independently of the workspaces.

How two workspaces can share code

Ws1

Ws2

Verifying what will happen.
If you are not sure what will happen when you use Snap you can ask it to show you which objects would be saved only. For example,

[]SE.SALT.Snap ‘/ws/utils -class=~9 –show’

will only show you the names that would be saved without actually saving them. If you also want to know where they would be saved you can use ‘–show=details’.

Changing the filenames

By default the filenames used are the same as each object’s name followed by ‘.dyalog’. If you wish to prefix these names by a special string you can use the –fileprefix modifiers. For example,

[]SE.SALT.Snap ‘/ws/utils -pattern=GUI* -fileprefix=Win’

will save all new objects starting with ‘GUI’ to files starting with ‘Win’, thus function ‘GUImenu’ will be saved in file ‘/ws/utils/WinGUImenu.dyalog’.

Skipping prompts

Unless your general prompting settings are set to NO, Snap will prompt you for replacement each time it finds a file that already exist. You will then have a choice of Yes to replace the file, No to skip that file or Cancel to skip the rest of the files. Snap will return only the names of the objects that have been effectively saved. If you wish to skip the prompting you can add the modifier –noprompt.

Using version numbers
SALT has the ability to keep version numbers for each file. If you wish to enable that feature for the objects Snap is about to save use the modifier –version. You can also specify the version number to use in which case ALL objects will be saved with the same version number.
Creating intermediate directories

When Snap saves an object it assumes the directories in the path given as argument already exist and won’t attempt to create them. If you know they don’t exist (typically the first time you save objects) you must ask Snap to create the directories for you by using the –makedir modifier otherwise the command will fail.
Converting namespaces to scripted form

When Snap saves namespaces in non-scripted form it has to convert them first into scripted form in order to perform the save. It then gets rid of the converted format and keeps the original one. If you subsequently Snap the workspace it will redo the work even is no change occurred to these namespaces because they cannot be tagged to let know Snap of the changes. If you wish to retain that form use the –convert modifier.

Recreating the workspace

You may be interested in recreating the workspace at a later moment in time. To do so you must remember which objects made up the workspace and bring them back one by one. Doing this by hand would be too tedious and prone to errors so Snap provides a way to do that for you.

If you use the –loadfn modifier Snap will create a function named <load_ws> in the same path given as argument. That function, when executed, will bring every object needed in the current workspace
 and run the []LX. If you want the function to exist elsewhere use –loadfn=/new/path instead. If the name ‘load_ws’ does not suit you then you can change it by adding an extension. There are 2 possible extensions: ‘.dyalog’ (or more simply ‘.’) which will create a function or ‘.dyapp’ which will create a script. Both are suitable for use by <Boot> and have the same effect. For example, to create a function named <loadit> do

[]SE.SALT.Snap ‘/ws/myapp -loadfn=/ws/myapp/loadit.dyalog’

Trick

If the location of the function to reload the workspace is the same as the code of the workspace you can avoid re-entering the same pathname for the loadfn modifier by replacing the path by ‘=’. And use only ‘.’ instead of ‘.dyalog’. Using the example above it would become

[]SE.SALT.Snap ‘/ws/myapp -loadfn= =/loadit.’

You can bring that (load) function in a workspace to execute it or ask SALT to do it for you via the <Boot> command. Boot takes a path to a file to read in and run. If the path is a function you should add the ‘.dyalog’ extension or use the –function modifier to remove any ambiguity. For example:

[]SE.SALT.Snap ‘/ws/myapp -loadfn -makedir’ ⍝ store the ws

)CLEAR

[]SE.SALT.Boot ‘/ws/myapp/load_ws –function’ ⍝ bring it back
will save the workspace (and create /ws/myapp if it did not exist) and recreate it in a clear workspace. The WSID and the []LX will be the same. []LX will be run automatically. If it should not be run then use the –Xload modifier to Boot.

Trick

If you have several workspaces to snap whose directory name is the same as the workspace’s name you can use ‘=’ instead of the workspace name when specifying the target folder. For example, let’s say you want to store the workspaces in your personal library under /apl/wslib so that workspace W is stored under /apl/wslib/W you can use

)Xload W

[]SE.SALT.Snap ‘/apl/wslib/= -loadfn -makedir’

for each workspace without having to retype the Snap line for each workspace; simply grab the line from the session log to re-execute it after each)XLOAD.
Restrictions

In its present form Snap cannot store some objects like instances (e.g. GUI) or variables in #. This restriction is unlikely to be lifted soon. Idioms and function refs are another kind of object impossible to store in this version.
Workarounds

Recreating the variables or instances upon)LOADing the workspace (i.e. thru []LX) will always work but may not always be practical because sometimes the work involved in recreating them will be substantial. For variables another way to do this would be to store them in a separate (scripted) namespace. When the workspace is reloaded the variables are moved to the root space. There is a modifier to do just that.

This modifier, vars, will create a namespace with the definitions of all legal root variables and save it under the name ‘vars_ns’. When used in conjunction with the loadfn modifier the load function created will contain a statement to load the contents of the file and disperse its contents into root, effectively recreating all globals. If you prefer another name for the file you can use –vars=newname
Epilogue
For all its elaborate definition Snap is deceptively simple. It merely saves all new objects where specified and modified ones where they belong. All the modifiers simply allow you to fine tune the process.
Dyalog 2008
� Without the star the pattern would be an exact match for the name specified in which case the <Save> command might as well be used

� It will merge the objects with the existing ones in the workspace, replacing them if necessary

