
Abstract

The paper discusses the design of APL# (pronounced “APL Sharp”), a new dialect of APL de-
signed with object oriented / language-agnostic virtual machine platforms in mind, using Mi-
crosoft.NET as the initial target.

Microsoft.Net is a software platform which is based on Microsoft’s Common Language
Runtime (CLR). Together with Sun’s Java Virtual Machine (JVM), the CLR is a popular member of a
(relatively) new family of “application virtual machines” (AVMs) which are rapidly growing in im-
portance as platforms for hardware-independent software development. These virtual machines
provide high level components such as memory management, exception handling and other services
which significantly simplify the task of implementing new programming languages. They also facilit-
ate communication between modules written in different languages by providing a single memory
manager and type system which is shared by every component which is built upon them. As the name
suggests, the CLR was designed in co-operation with a diverse group of language implementers, and
the services that it provides are designed to be “language agnostic”.

APL# will also run under Microsoft SilverLight [SilverLight], a web browser plug-in which
competes with products like Adobe Flash as a platform for “rich client” web applications. In fact, Sil-
verLight is a cut-down version of the Microsoft.Net framework, capable of running many .Net applic-
ations. SilverLight can be installed as a plug-in for most popular web browsers, under Microsoft Win-
dows and Apple’s Mac OS X. The list of short-term target platforms also includes Mono and Moon-
Light [Mono], which are open-source versions of the Microsoft.Net Framework and SilverLight, re-
spectively – available under Linux and a growing number of other operating systems. There is reason
to expect that SilverLight and Moonlight will achieve almost universal availability over the next few
years, and that it will be possible to deploy applications written in APL# – including “rich” user inter-
faces if required - on virtually any platform, possibly including the majority of mobile devices.

Motivation

Virtual Machines provide two very important benefits: Firstly, applications become (at least
theoretically) universally portable, because the VM can be implemented on many different types of
hardware. Modern AVMs include large libraries of high-level components, which make the develop-
ment of cross-platform applications easier than it has ever been before.

Secondly (but perhaps most significantly in the short term), the modern AVMs provide a secure
environment, where the access that an application has to both local and remote resources can be
strictly controlled. Such applications are said to be managed, or safe. Managed applications can be
safely distributed across the internet, because it is possible to guarantee that they will not read or
write data on the client computer onto which they have been downloaded – and that internet access is
restricted to communication with the server from which they were downloaded. From a security per-

1

APL# - an APL for Microsoft.Net
Morten Kromberg, Jonathan Manktelow, John Scholes

Dyalog Ltd
Minchens Court, Minchens Lane, Bramley, RG26 5BH, United Kingdom

aplsharp@dyalog.com

State of the art of array processing languages

spective, the application can be considered to be running on the host computer, although it is making
use of local resources for both presentation and data manipulation.

Dyalog APL has had a bridge to the Microsoft.Net framework since 2002, and this interface has
allowed APL developers to successfully tap in to many of the tools that the framework provides.
However, there are a few glitches and discontinuities where the memory management model and type
system of Dyalog APL conflict with the CLR. The design of APL# will resolve these conflicts, pro-
ducing a language system which is “native” to the CLR.

The immediate goal of the APL# project is to make the benefits of safe/managed computing
available to users of APL. With APL#, it will be possible to run the same APL application on a vari-
ety of client platforms, simply by directing users to a web page from which the software is retrieved
and run – and it will be possible to do this with the blessings of most security departments. No actual
“installation” of software is required on the client computer (the application is merely “cached”, in or-
der to make it start faster the next time).

Freedom from Upwards Compatibility

Most APL interpreters request a single, large quantity of memory (the workspace) from the op-
erating system, and manage user data and the APL execution stack without interference from the out-
side world. On an AVM, we will be sharing the program stack and memory manager with other pro-
gramming languages, and this more or less dictates some significant changes in APL language se-
mantics. In addition, most of the system functions that provide interfaces to Application Program In-
terfaces (APIs) will be abandoned in favour of tools provided by the AVM. For the first time in the
history of the team behind Dyalog APL, we are designing an APL interpreter which does not need to
run the same application code as the previous version1, and we have taken advantage of this opportun-
ity to take a fresh look at the language.

It is our hope that we will be able to take advantage of some of the work that has been done in-
side the array language community in languages like J, and combine this with the improved under-
standing of functional and dynamic languages that has emerged in recent decades. Our goal is to cre-
ate a more competitive dialect of APL, that will be easier to market to a new generation of users –
both to “domain experts” who have limited experience with software development, and to those “soft-
ware engineers” who are looking for more dynamic tools. Although APL# must be a “first class cit-
izen” of the Microsoft.Net framework, we want a language which will be portable to other VMs (like
the Java VM), and can also be implemented on “real” computer hardware. In other words, there must
not be any elements of the core language which require Microsoft.Net.

In addition, APL# is expected to have performance characteristics which – at least initially –
will be significantly different from those of Dyalog APL. We expect some things will be much faster;
others will be slower, as many of the optimization techniques used by current APL interpreters cannot
be translated to a strongly typed AVM memory manager, which does not provide reference counts for
allocated memory [MicrosoftGCol]. We (or the APL application developers) will need to find new
ways to write fast code. As a result, Dyalog will not be recommending that customers move quickly
to translate existing applications to APL#. We think of APL# as a companion to traditional APL,
aimed at new applications which can benefit from being native to an AVM – or as components of
multi-tier applications which use APL# together with other APL systems. We also expect that some
of the new language features pioneered in APL# will find their way “back” into Dyalog APL, and that
the two languages will grow closer in the decade(s) to come.

1 Changes have not been introduced lightly; except for missing APIs, we believe that it remains possible to
semi-automatically translate the bulk of existing APL algorithms into APL# and intend to build tools to do so.

2

Challenges

The services provided by the CLR make it relatively easy to implement a new programming
language, and the ability to inter-operate with solutions written in other languages makes a wide vari-
ety of tools available to the application developer. However, this is a double-edged sword: when the
framework is managing a heap (“workspace”) containing data which is shared between many pro-
gramming languages, and also allows the stack to consist of functions written in different program-
ming languages, APL# is not only forced to use the same type system – it should ideally also agree
with other languages about what an application stack can contain. Under Microsoft.Net, it will be
common for an APL# function to call a function written in a language like C# - which in turn calls
another (or the original) APL# function. Unless we want to be faking a lot of things behind the cov-
ers, and be a language which has strange discontinuities when debugging applications which use more
than one programming language, we need to abandon some of the most central dogma of “classic”
APL interpreters:

‐ The illusion that APL only has two basic data types: numbers and characters: APL# will still
treat most numeric types (including Booleans) as a single logical type, but will also support
all the data types available on the platform, as elements of an array.

‐ That arguments are always passed “by value”: in APL#, arrays are passed “by reference”, as
they would be in most other programming languages.

‐ That user-defined names are global by default, and local variables are visible to all called
functions: in APL#, all names created by a function are strictly local, unless they are placed
within a pre-existing global container.

The challenge is to retain the key advantages of APL, while transforming the language in ways
which are dictated by the constraints of an “alien” software platform which is heavily influenced by
scalar- and object-oriented compiled languages. Fortunately, the most important language changes,
such as the strictly local scope for new names and the availability of arrays which are passed by refer-
ence, are not new ideas; they have been proposed by many APL language theorists in the past [Seed-
s1978]. In fact, variants of these features have become available in Dyalog APL over the past decade
or more: local scope is the default for the functional dialect known as D-fns [Scholes1996] – and
users of namespaces and other object oriented features of Dyalog APL will be familiar with object
references. As a result of our experience with these features, we are reasonably comfortable that their
rise to prominence as “mainstream” features of APL# is not going to impair the use of APL# as an ef-
fective tool of thought2.

When designing a programming language for an AVM, there is a strong temptation to adopt
characteristics of the languages most closely identified with the VM (Java for the JVM and C# for the
CLR). We are not the first team to attempt to design an APL system for Microsoft.Net: in 2003,
APL2000 released VisualAPL, an APL system for Microsoft.Net. VisualAPL provides the program-
mer with the option of using in-line C# syntax as well as APL syntax, and the APL itself has also ad-
opted certain elements of C# syntax and semantics. Although compatibility with C# does have signi-
ficant benefits, like making it possible to use code samples written for C# directly, the underlying
philosophy of C# and APL languages is substantially different, and we feel very uneasy about tack-
ling the design decisions that will arise as a result of “mixing languages together”. Although our goal
is to enable the mixing of APL with other languages, we are determined to do what we can to avoid
making it a requirement that APL users are familiar with mainstream programming paradigms.

2 Despite the fact that software engineers would also approve of these changes .

3

As an example of the difficult decisions that can result from approaching the mainstream
closely: VisualAPL has changed the meaning of the symbol = to denote assignment by reference (as
in C# and many other languages). The old APL assignment arrow (←) still means assignment by value
(making a copy). This is an elegant choice, but means that an alternative must be found for the old use
of the = symbol: VisualAPL uses syntax borrowed from C# (==) to denote exact comparison, while
tolerant equality is written using the symbol ≈, to emphasize the dependence on comparison toleran-
ce. However, there is only one instance of each of the other relational primitives (like ≤ and ≥), which
are written using the normal APL symbols, despite the fact that they are always tolerant. The use of
two symbols to denote a single function (==) also has the side-effect of removing the option of ever
assigning a monadic definition to =.

The “paradigm conflicts” extend to the underlying implementation: In the first versions of Vi-
sualAPL, tolerant equality was defined in terms of an absolute difference between numbers being
compared. In APL, comparison tolerance is defined as a relative difference, which has been carefully
calibrated to hide the effects of errors introduced by the use of double-precision floating-point arith-
metic (a typical default value of 1E¯14 expresses tolerance to accumulated errors in the 14th digit of
the 16-17 digits which are available). Recent versions of VisualAPL do implement the relative differ-
ence in accordance with the APL standard, but the default value for comparison tolerance has been re-
tained (the Microsoft.Net constant known as Double.Epsilon - roughly 4.9E¯324). This value
effectively expresses tolerance to errors beyond the 300th digit of the result, which means that the
function called “approximately equals” is “exact” for all intents and purposes when using double-pre-
cision floating-point numbers. It is possible to get the result “that one would expect” by using a toler-
ance similar to that used in other APL systems – but by default, in VisualAPL:

 A←Ι10
 A ≈ (A*0.5)*2 ⍝ Note use of “Approximately Equal” (≈)
1 1 0 0 1 0 0 0 0 1

We are also proposing significant changes to APL. In fact, APL# is perhaps more radical than
VisualAPL in its departures from certain aspects of traditional APL. Our biggest worry is that we will
pick features which “break” (rather than strengthen) the language, as a result of adopting features
which are fundamentally at odds with APL. It is easy for a small team to convince itself that each step
in a train of choices is elegant, or even “the only logical choice”, and still arrive at a result that a ma-
jority of users will find unpalatable. We hope that the APL community will provide us with construc-
tive feedback and that we will be able to proceed with confidence after a suitable discussion.

Language Direction

We believe that it is critical to the future growth of the APL language that it has a simple and
consistent definition, allowing the user to maintain a small and precise mental model of the language,
keeping it a good tool for the description of mathematical identities and processes. We do also expect
to make (some) software engineers significantly happier with APL# than they were with APL, but - as
illustrated in the previous section - we feel that we need to pick our way very carefully in our search
for ways in which APL can become a first class citizen of the AVM platforms, without introducing
“language-breaking features”.

We believe that there is a real opportunity to re-introduce APL as a modern language which
comfortably integrates a number of paradigms which are currently gaining respect: Functional, Dy-
namic and Array-oriented programming – into an Object-Oriented package. We believe that some
current users of “functional” and “scripting” languages like F#, Python, Ruby and Perl will find APL
to be an attractive alternative for computational and extremely dynamic applications, and that the
changes required to attract this market have a relatively low risk of breaking the language.

4

We have decided to use the Extended APL Standard (ISO/IEC 13751) – henceforth referred to
as EAS - as the foundation for the new language – with a few extensions which mostly derive from
current Dyalog APL. The syntax for user-defined functions and operators builds upon the work that
John Scholes has pioneered at Dyalog, which has resulted in a functional dialect of APL known as D-
Fns. D-Fns, with their roots in Ken Iverson’s Direct Definition [Iverson1976], provide a notation for
functional programming embedded within Dyalog APL. From a humble beginning, D-Fns have
grown continuously in popularity among users of Dyalog APL, and have become a significant com-
ponent of many applications.

Core Language Specification

The language specification is still changing, and this paper is by no means a complete descrip-
tion of the current specification. We are preparing to discuss the specification with users of Dyalog
APL, the APL community, and ideally also other programming communities, following the first pub-
lication of the specification in conjunction with the APL2010 conference in Berlin. Before the confer-
ence begins, we will publish the current language specification (which will still be “work in
progress”) on the language web page, http://www.aplsharp.com. Although we have started work on
an implementation, we are prepared to make significant changes if feedback from the community
warrants it.

APL# will adopt Dyalog’s definitions of primitive functions and operators, except where these
differ from EAS. In other words, APL# will conform to EAS, extended with a number of features that
appear in Dyalog APL but not in EAS. This means that the definition of all of the primitive language
constructs will be very close to those in Dyalog APL at “migration level 3” (APL# does not have the
migration level switch, it always behaves as if ⎕ml←3). APL# can also be described as a variant of
Dyalog APL with more emphasis on functional programming, with a core language which has moved
several steps closer to both the EAS and to the APL2 language specification.

APL# includes a number of language elements which are either not defined in the EAS, or im-
plemented differently from the EAS. The important differences and extensions are:

 User-defined functions and operators, control structures and “guard expressions” are
specified using a syntax which derives from Dyalog D-Fns. The most dramatic departure
from traditional APL is unquestionably that, within these functions and operators, new names
are all strictly local unless they are located within containers known as Spaces. The details of
the new function syntax, which extends D-Fns to encompass “procedural” functions, are the
subject of a separate paper at APL2010 [Manktelow2010].

 All arrays are references. The assignment of one name to another name (B←A) does not im-
ply the creation of a separate copy of the variable, as it would in traditional APL. If either A
or B is modified (changed without being overwritten entirely), the other variable also chan-
ges. Arrays are always passed by reference when used as arguments to functions. An explicit
Copy function («) must be used to take a separate copy of an array.

 The vast majority of system variables, functions and operators have been eliminated. In
particular, it is proposed that index origin be fixed at 0, and comparison tolerance at 1E¯14.
It is proposed that the Variant operator be used to select variants of primitives. For example,
exact comparison can be written as (=⍠0), and (1 2 3≡(Ι⍠1)3).

 Additional Primitive operators: Composition (∘) and Power (⍣) from Dyalog APL, Rank
(⍤) from SHARP APL and J, plus the Variant operator (⍠), proposed by Ken Iverson in 1978
[Iverson1978] – but using a slightly different symbol. As in Dyalog APL and NARS2000, the

5

symbol / is ambivalent, it is the operator Reduce when a function appears on the left, and the
function Replicate when an array is immediately to the left.

 Parallelism built-in to primitive operators: The operators each (¨), outer product (∘.Ω) and
rank (⍤) – and the execution of multiple expressions in using the dot to the right of an array of
spaces - will have no pre-defined order of execution, allowing the system to execute them in
parallel if it so chooses. Parallel control structures will possibly also be considered.

 Event handling, otherwise known as error trapping, will be different from Dyalog APL in
order to properly support the event handling of the AVM.

 Additional Primitive functions: Split (monadic ↓ ⌷, monadic and dyadic Index () from Dya-

log APL. New (¤), String ($) and Copy («).

 Selective specification is defined as per Dyalog, extended with enlist and functions derived
from each, as in (∊¨V)←0.

 Binding strengths as per Dyalog APL. For example vector (strand) binding will continue to
be stronger than operator-operand binding

In addition to the above, APL# is an object oriented language, with the following key features which
are not addressed in the EAS:

 APL# supports the definition of dynamic classes, which are a relatively new concept in
the .Net framework, but have behavior which is very similar to Dyalog APL namespaces. As
the name suggests, a dynamic object is one into which variables and functions can be injected
at runtime. Support for statically typed classes will probably be added after the first release.

 In APL#, the system function ⎕NEW is replaced by the primitive function New (¤), which
takes a type on the left and constructor arguments on the right. The right (constructor) argu-
ment to monadic ¤ is a script which is used to initialize a new Space.

 As in Dyalog APL, structural functions will be able to work with [arrays of] objects supported
by the native support for all types supported by the underlying AVM.

o Primitive functions will support all relevant numeric .Net types, including Com-
plex numbers (as Dyalog APL, but covering a few more types).

o Double-quotes are used to delimit Strings, which are a new scalar data type.
Strings can be converted to and from character vectors using the String function ($).
In other words, (0 = ΡΡ"Hello") and ('Hello' ≡ $"Hello").

o APL# will endeavour to treat any object which is indexable as if it were an array.
Under Microsoft.Net, this applies to instances of System.Array and anything
which implements the interfaces IList or the “generic” IList<T> (this list may be
extended). In current Dyalog APL, it is currently necessary first to apply the monadic
Index function (⌷) to turn enumerable or indexable objects into APL arrays.

6

 Like Dyalog APL, APL# supports the notion that Arrays are a higher level of organiza-
tion than Objects [Kromberg2007]. In particular, if ArrayOfObjs is an array of objects,
then ArrayOfObjs.PropName refers to the named property of each element of the array,
rather than a property of the container itself. The escaped dot (`.) is used to evaluate names
in the context of a container. For example, the number of elements in the container might be
found as ArrayOfObjs`.Count.

Several of the above departures are discussed in more detail in the following sections.

User-Defined Functions and Operators

APL# functions and operators are defined using a new syntax which combines the features of
D-Fns and T-Fns (traditional APL functions) into a unified whole. The new definition attempts to
provide “the best of both worlds”, providing a vehicle for both procedural and functional program-
ming, based upon the cleanness of the D-Function style. Both named and unnamed functions (and op-
erators) are supported and, within the bodies, the naming of arguments is also optional. The syntax al-
lows the use of both traditional control structures and D-Fn guards – which can also be used as value-
returning expressions.

 As an illustration, an example of an APL# function to find the real roots of a quadratic equa-
tion is listed below. The header (a b c), which is separated from the body of the function by the →
symbol (read “maps to”), specifies that the function takes a three-element vector on the right:

roots←{ (a b c) → ⍝ real roots of quadratic
 d←(b*2)-4×a×c ⍝ Discriminant

 (:If d<0
 ⍬
 :ElseIf d=0
 -b
 :Else
 -b+¯1 1×d*0.5
 :End)÷2×a ⍝ Result of if stmt divided by 2×a

}

Note the use of a parenthesised if-then-else structure to compute a value which is subsequently
used as a left argument to division.

The following is an example of a monadic defined operator which can be identified by the curly
braces surrounding the left operand in the header. This operator applies its operand to the leaves of an
array.

leaf←{ {f} r → ⍝ Monadic operator, monadic derived function

 0=≡r: f r ⍝ If simple, apply f
 ∇¨r ⍝ Else recursive application of derived fn
}

For more on the “unified” function and operator notation, see [Manktelow2010].

All Names are Strictly Local

One of aspects of the new function and operator syntax which is worthy of separate mention is
that names defined within a function (like the variable d in the roots function) are strictly local to

7

the function3 – not only are they not visible to the calling environment, they are not visible to any
functions which are called by the function which defines them. Global names must be stored either in
the “application root” (#.TheAnswer←42) or the “current space” (⎕this.x←99)4 – or indeed
within spaces which can be reached from one of those two spaces
(#.TrigConstants.pi←22÷7). Spaces containing data can of course also be passed as argu-
ments to a function, allowing the creation of new “global” variables within a space:

 data←¤'(a b)←1 2' ⍝ or (data←¤'').(a b)←1 2
 {Ω.c ← Ω.a + Ω.b} data
 data.c
3

The conversion of traditional APL systems using “semi-global” variables will require the gen-
eration of a set of suitable container spaces corresponding to each significant semi-global context, to
hold the data (we believe that such a conversion process can be semi-automated based on an analysis
of the calling tree of the application – but will undoubtedly require manual intervention).

All Arrays are References

Many of the components that an APL# application would wish to share data with expect arrays
to be passed by reference and subsequently shared (the .Net type System.Array is a so-called ref-
erence type). For example, in order to populate a data grid in a user interface with the contents of an
array, one would typically pass a reference to the array to a data grid object. Subsequently, changes
made by the application to the shared array will be reflected in the data grid, and modifications made
by the end user will “automatically” be reflected in the array.

There is no question that APL# needs to support reference arrays in order to function as a Mi-
crosoft.Net language. This is a significant and possibly “language-breaking” change, and we expect
(and welcome) significant debate with members of the APL community. At present, we feel that hav-
ing two types of function argument and/or two types of APL array would be a significant complica-
tion to the mental model of APL#, and thus an impediment to its use as a tool of thought. Given that
APL# users will need to understand reference arrays, the current proposal is therefore that all arrays
be reference arrays - and that a new Copy function («) should be used to explicitly clone data when
this is required. Note that « is not an assignment arrow, it is simply a function which makes a shallow
copy of the right argument. It allows assignment by value to be written as the “idiom” ←«, as in the
following examples:

 A←'Hallo'
 C←«B←A
 B[1]←'e'
 A C
Hello Hallo

Arrays passed to functions would also (always) be passed by reference; if the function mutates
an argument, the change will be propagated to the argument array:

 vstar←{v → ((v∊'aeiou')/v)←'*' ⋄ v} ⍝ Lower vowels => *
 vstar A

3 They are also visible to any “nested” functions which are defined within the function body.

4 We are hoping to come up with a suitable glyph to replace ⎕this.

8

H*ll*
 A
H*ll*
 vstar «C ⍝ Pass copy of C to avoid modification
H*ll*

The above is controversial, but it feels preferable to inventing syntax to declare (and detect) two
types of arrays and two types of argument passing. It is possible that the function notation should be
extended to allow declarations that selected arguments should be copied (for example, by prefixing
those names with a « in the header), but we are keen to keep the notation as lean as possible.

During the review process of this paper, we have moved a few steps closer to adding a separate
symbol for “mutating assignment” (an assignment that will “overwrite” a complete, causing all refer-
ences to an existing name to point to a new value), and that we also need to add a merge operator (as
in J), in order to provide an indexed assignment mechanism which does not modify the target array,
as indexed assignment does.

Index Origin Zero

APL users almost unanimously agree that variable index origin (⎕IO) should be abolished. Un-
fortunately, the agreement does not extend to the choice of which value to use for fixed origin. This
choice may well be the most controversial issue in the design of the new language. A significant pro-
portion of users seem to agree that “counting starts at one”, and that an index origin of 1 is therefore
more intuitive. As our goal is to provide an effective tool of thought, this argument does weigh heav-
ily. Unfortunately, computer hardware addressing starts at zero and this has managed to permeate vir-
tually all modern computer languages, even those that claim to be “high level”. Starting at zero does
lead to slightly simpler algorithms in many cases.

It seems impossible to arrive at the best choice through objective debate. However, the fact that
virtually all other languages have chosen 0, and that APL# will share objects with these languages,
seems decisive – whether we consider it to be right or wrong. In APL#, an indexing expression like
X[I] will often not be executed by the APL interpreter5: indexing is generally implemented as a
function call to the component which implements the object X, and it will apply its own interpretation
to the index I. This means that the index origin in APL# will not be applied, unless an origin-1 APL#
system tries to pre-adjust the index origin in order to “compensate”. However, that would require
knowledge of the target system index origin, an item of information which is not available. Objects
are sometimes indexed by a key rather than a position - if the index is a phone number, then adjusting
it would be catastrophic. Thus, in an APL system with an index origin of 1, arrays which happen to
have been created by the current APL session could possibly honour the index origin, but other arrays
and other types of objects would not – and there would be no reliable way to determine this. Some
more research is required into this issue, but at this time, fixing index origin at zero currently seems to
be the only way to make indexing a generally predictable operation.

This might seem to be an insurmountable problem when migrating existing algorithms from
traditional APL to APL#. However, it may be possible to automate conversions of origin-1 code by
translating all instances of Ι to (Ι⍠1), and prefixing all indexing expressions by ¯1+.

5 In fact, this problem already exists in Dyalog APL: When indexing COM or .Net objects, ⎕IO has no effect.

9

Objects

The function New (¤) takes a type on the left and a set of constructor arguments on the right.
For example:

 today←DateTime ¤ 2010 7 30 ⍝ Instance of System.DateTime
 today.DayOfWeek ⍝ Reference DayOfWeek property
Friday

A monadic call to ¤ is the same as a dyadic call with the AplSpace type on the left, and cre-
ates a “APL Space”, or Space for short. A Space is a dynamic object, a container into which any ob-
ject can be inserted – almost identical to a Dyalog APL Namespace. Dynamic objects are a recent ad-
dition to the Microsoft.Net framework, added to support dynamic languages like IronPython, and now
also supported by recent versions of C# and other statically typed languages.

 sp1←¤'' ⍝ Create an empty Space
 sp1.var←9 ⍝ Define a variable in the space
 sp1.(double←{2×Ω}) ⍝ … and a function …

When creating a new Space, the constructor argument is a script, which is used to initialize the
space. An alternative to the above would be:

 sp1←¤'var←9' 'double←{2×Ω}'
 sp1.(double var)
18

As in Dyalog APL, the dot notation extends to arrays of objects by evaluating the expression to
the right of the dot within the context of each element of the array on the left (for an extensive discus-
sion of the treatment of arrays of objects, see [Kromberg2007]):

 ymd←(2010 7 30)(2010 7 31)(2010 8 1)
 Ρdays←DateTime ¤¨ ymd
 3
 days.DayOfWeek
 Friday Saturday Sunday
 ymd ≡ days.(Year Month Day)
 1

In APL#, every array is also an object, and we need a notation to access properties of the con-
tainer itself, rather than the properties of the elements of the array. The current proposal is to use an
“escaped dot”, as follows (Count is a property that will be exposed by APL arrays, for the benefit of
other languages that might be presented with data in this form):

 days`.Count
 3

The treatment of containers as described above will extend to objects of all the types that APL#
is able to recognize as indexable arrays.

Integration with Microsoft.Net

 As previously mentioned, the APL# language specification may not contain any language ele-
ments which are directly linked to Microsoft.Net, as it is a requirement that APL# can be ported to a

10

different AVM or to a native implementation. This restriction does not prevent APL# from integrating
fully with the .Net framework; APL# will be a fully managed component which can share data with
components written in other .Net languages, and can “provide” components which can be used by
both dynamic and statically typed languages on the framework. It is not yet clear whether it will be
necessary to provide support for defining statically typed classes in APL#, or whether the platforms’
growing support for dynamic languages will make this unnecessary.

Like most other APL systems, APL# will not have any reserved words. However, as with Dy-
alog APL and other .Net languages6 , it will provide a mechanism for declaring a list of .Net
namespaces that a program will be using – which can make it appear as if sections of the framework –
or indeed selected third party components – have become reserved words in the language. If an ex-
pression contains a name which has no current definition, APL# will search the list of “used”
namespaces. For example, a statement which refers to the name DateTime in an empty space, will
find the System.DateTime class, because the Microsoft.Net System namespace is on the default
set of used namespaces. This may create the impression that DateTime is a reserved word in APL#,
but this is not the case – the name is available for use by the APL# developer. If necessary, the prefix
` can be used to bypass the current namespace and search the list of used spaces immediately. In oth-
er words, `DateTime would ignore any local use of the name. To avoid any potential for name con-
flicts, the use of the ` can be recommended.

Exception handling is an area where name conflicts may be particularly problematic, as the
framework specifies exceptions as a hierarchy of types, such as DivideByZeroException,
which is a subtype of ArithmeticException (both to be found in the System namespace). Ap-
plication code will possibly become bound to a particular AVM if these names are used in control
structures for event handling, in place of the event numbers used in traditional APL (in current Dy-
alog APL, event number 90 will catch all .Net exceptions). The use of names does seem preferable to
numbers, but an open design issue remains whether APL# should contain a set of exception classes
which organise .Net exceptions into platform-independent groups, as an alternative to the .Net names.

Development Tools

At this point, our main focus is on the core language design. However, some ideas about the
tools that will surround the new language are forming.

 Development Environment: Dyalog is developing a new Remote Integrated Develop-
ment Environment (RIDE), which will be a SilverLight/MoonLight application, able to
run on just about any desktop or mobile platform. The RIDE is intended to provide all
the important functionality of the current Dyalog session, and will be able to connect to
and provide a graphical development environment for Dyalog APL and APL# running
on any platform.

There will also be a front-end to the interpreter which is a simple interactive prompt,
and at least one which is able to “pipe” input from standard input and output streams. In
the longer term, we expect to provide Visual Studio and eventually also front-ends Ec-
lipse and perhaps also editors like EMACS (the separation of the engine from the IDE
will allow third parties to develop their own front-ends).

 Source Code in Unicode Text Files: The recommended way to store APL# (and Dy-
alog APL) source code and scripts is to use Unicode Text Files. A packaging utility

6 Although Dyalog APL is not managed, it provides a high degree of interoperability with the Microsoft.Net
framework and is considered to be a “.Net Language” by Microsoft.

11

which will turn a set of scripts into distributable applications in the form of a .Net exe
file or a SilverLight xap file (Visual Studio support will integrate this tool with VS pro-
ject management).

In the longer term, we also expect to provide ways to serialize the contents of an active
APL# session - at least all the APL# arrays and code contained in the session – to
provide the equivalent of a traditional “saved workspace”. However, it is unlikely that it
will become possible to save a workspace which has a stack, since the stack may con-
tain components not under the control of APL#.

 Utility Libraries for APL: Although the Microsoft.Net framework provides classes or
libraries which we expect will replace most interfaces which are currently implemented
as system functions in traditional APL systems, we do anticipate that some interfaces
will still need to be “wrapped” in order to be convenient to use from APL. For example,
the system function ⎕XML, which converts XML into arrays, may be sufficiently useful
to warrant inclusion as an alternative to the very object oriented interfaces that the
framework provides. Wherever possible, such interfaces will be provided as standard
.Net libraries, which could be used from other languages than APL.

 Compiled Code: The first version of APL# will be interpreted, but in the longer term
we expect to be able to compile certain types of applications to “IL”.

Interoperability with Dyalog APL

Since APL# is intended as a companion to - rather than a replacement for - Dyalog APL, em-
phasis will be placed on easy interoperability between the two languages:

 APL# and Dyalog APL will easily be able to call each other in a variety of different
ways, since both are Microsoft.Net languages.

 As mentioned in the previous section, the languages will share a common development
environment, the RIDE. We expect that it will be common to write applications which
use both products, and will endeavour to make the debugging of hybrid Dyalog APL +
APL# applications as seamless as possible.

 The component file system and our TCP libraries will be able to exchange APL Arrays
between APL# and Dyalog APL – and any other .Net language: we will provide .Net
classes to interface to these components.

 Some of the new features of APL# will probably be “back ported” to Dyalog APL in
the years to come, with a goal of making it possible to define a subset of the language
will be able to move between the platforms with minimal or no conversion.

Conclusion

After more than a year of internal discussion and consultation with a few external advisors, our
ideas for a new APL dialect have condensed to the point where we feel that we need to present it to a
wider audience to get some feedback. Some of the language features described in this paper may
seem alien to current users of APL, but we hope that the reader will bear in mind that the paper is fo-
cusing on the differences, and not the similarities, with current APL systems.

12

The goal is that, despite taking object-orientation and other features of the new virtual machine
platforms like the Microsoft.Net framework on board, we will have a language which remains a
“pure” APL system; an executable mathematical notation and a Tool of Thought for the exploration
of data and algorithms, which enables the dynamic construction of software systems embedding a
high degree of domain knowledge. The language must satisfy the requirements of software and engin-
eers with respect to constructing portable, secure applications – but not require all APL users to be-
come “experts in IT”.

This is perhaps a tall order. However, although they may seem alien at first sight, it is our belief
that the new frameworks like Microsoft.Net are fundamentally APL-friendly, and will make it much
easier to achieve modes of APL system development which are more similar in flavour to the “open
systems” of APLs first “golden age” in the 1970s and 1980s, than the systems built on the difficult
APIs from the early GUI years.

As APL approaches its 50th anniversary, our goal is to design an APL system for the next 50
years, and we look forward to a lively debate!

Acknowlegements

Thanks to Joe Blaze of APL2000 for helping us get the facts straight with respect to features of
VisualAPL, and to Roger Hui for educating us about the Variant operator and reminding us of many
other ideas, his own and others, new and old.

13

References

[Iverson1976] Direct Definition: Elementary Analysis, APL Press, 1976, Chapter 10, pp. 140-158.
http://www.jsoftware.com/papers/DirectDef.htm

[Iverson1978] IBM Research Report RC 7091 (#30399), 1978-04-26, http://www.jsoftware.com/pa-
pers/opfns.htm

[Kromberg2007] Arrays of objects. Proceedings of the 2007 symposium on Dynamic Languages.

[Manktelow2010] “Unifying D-Fns and T-Fns in APL#”, Manktelow, Kromberg & Scholes, Proceed-
ings APL 2010 LPA - Berlin, 2010.

[MicrosoftGCol] Microsoft.Net Framework 4 Garbage Collection: http://msdn.microsoft.com/en-
us/library/0xy59wtx.aspx

[Mono] Mono and Moonlight home page at http://www.mono-project.com

[Scholes1996] “Dynamic Functions in Dyalog APL” www.dyalog.com/download/dfns.pdf

[Seeds1978] Seeds, G.M., A. Arpin, and M. LaBarre, "Name Scope Control in APL Defined Func-
tions", APL Quote-Quad, Volume 8, Number 4, 1978-06, pp. 15-19.

[Silverlight] Home page at http://www.silverlight.net

14

