Abstract Expressionism for Parallel Performance

Robert Bernecky! Sven-Bodo Scholz?

1Snake Island Research Inc, Canada
bernecky@snakeisland.com

2Heriot-Watt University, UK
S.Scholz@hw.ac.uk

This paper was presented at PLDI 2015, Portland, OR.

August 31, 2015

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Abstract

Optimizing Functional Array Language (FAL) compilers for
languages such as APL (APEX) and SAC (sac2c), now produce
code that outperforms hand-optimized C in both serial and parallel
arenas, while retaining the abstract expressionist nature of
well-written FAL code.

In this talk, we demonstrate how FAL can now outperform C, in
both serial and OpenMP variants, by up to a third, with no source
code modifications. We also show that modern optimizers can
sometimes generate identical loops from substantially different FAL
source code.

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Talk Layout

» Serial performance: physics relaxation benchmark

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Talk Layout

» Serial performance: physics relaxation benchmark

» Parallel performance: physics relaxation benchmark

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Talk Layout

» Serial performance: physics relaxation benchmark
» Parallel performance: physics relaxation benchmark

» Wild applause

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

A Physics Benchmark: Vector Relaxation

» Inputs: temperatures (fixed) at each end of N-element rod

Dyalog APL/S-64 Version 14.1.25324

8-core AMD FX-8350 (Piledriver) @ 4013MHz, 32GB DRAM
Ubuntu 14.04LTS, sac2c Build #18605, gcc 4.8.2-19ubuntul
100000 iterations of relaxation kernel

100001-element vector argument, N

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

A Physics Benchmark: Vector Relaxation

» Inputs: temperatures (fixed) at each end of N-element rod

» Output: End element temperatures remain unchanged;
Other element temps are arithmetic mean of neighbors

Dyalog APL/S-64 Version 14.1.25324

8-core AMD FX-8350 (Piledriver) @ 4013MHz, 32GB DRAM
Ubuntu 14.04LTS, sac2c Build #18605, gcc 4.8.2-19ubuntul
100000 iterations of relaxation kernel

100001-element vector argument, N

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

A Physics Benchmark: Vector Relaxation

» Inputs: temperatures (fixed) at each end of N-element rod

» Output: End element temperatures remain unchanged;
Other element temps are arithmetic mean of neighbors

» Application: image processing, e.g., dust removal (2D)

Dyalog APL/S-64 Version 14.1.25324

8-core AMD FX-8350 (Piledriver) @ 4013MHz, 32GB DRAM
Ubuntu 14.04LTS, sac2c Build #18605, gcc 4.8.2-19ubuntul
100000 iterations of relaxation kernel

100001-element vector argument, N

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

A Physics Benchmark: Vector Relaxation

» Inputs: temperatures (fixed) at each end of N-element rod
» Output: End element temperatures remain unchanged;
Other element temps are arithmetic mean of neighbors

» Application: image processing, e.g., dust removal (2D)

» Application: temperature distribution in a rod
Dyalog APL/S-64 Version 14.1.25324
8-core AMD FX-8350 (Piledriver) @ 4013MHz, 32GB DRAM
Ubuntu 14.04LTS, sac2c Build #18605, gcc 4.8.2-19ubuntul

100000 iterations of relaxation kernel
100001-element vector argument, N

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Abstract Expressionism in Dyalog APL

Three Ways to do Vector Relaxation in Dyalog APL

» Abstract: No tinkering of “memory"

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Abstract Expressionism in Dyalog APL

Three Ways to do Vector Relaxation in Dyalog APL

» Abstract: No tinkering of “memory"

» Expressions: No need for variables (convenience only)

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Abstract Expressionism in Dyalog APL

Three Ways to do Vector Relaxation in Dyalog APL

» Abstract: No tinkering of “memory"
» Expressions: No need for variables (convenience only)
» TD<{(1tw), (((2vw)+ 2yw)+2.0), 1tw}

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Abstract Expressionism in Dyalog APL

Three Ways to do Vector Relaxation in Dyalog APL

» Abstract: No tinkering of “memory"
» Expressions: No need for variables (convenience only)
> TD<{(1tw), (((2¢w)+ 2¢vw)+2.0), 1+tw}

» ROT<«{N<«pPw
m<(0=1N)V(N-1)=1N
(mxw)+(~m)x ((1Pw)+ 1¢w)+2.0}

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Abstract Expressionism in Dyalog APL

Three Ways to do Vector Relaxation in Dyalog APL

v

Abstract: No tinkering of “memory"

v

Expressions: No need for variables (convenience only)
TD<{(1tw), (((2¢w)+ 2vw)+2.0), 1tw}
ROT«{N<+Pw
m<(0=1N)V(N-1)=1N
(mxw)+(~m)*x ((10w)+ 1¢w)+2.0}
SHF <« {N<pPw
m<(0=1N)V(N-1)=1N
(mxw)+(~m)*x((1 shift w)+ 1 shift w)+2}
shift<{((xa)xpw)taiw}

v

v

v

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Serial Relaxation Timings in Dyalog APL

TD<«{(1tw), (((2¢w)+ 2¢w)+2.0), 1tw}
ROT<+{N<«pPw
m<(0=1N)V(N-1)=1N
(mxw)+(~m)x((10w)+ 10w)+2.0}
SHF « {N<«pw
m<(0=1N)V(N-1)=1N
(mxw)+(~m)x((1 shift w)+ 1 shift w)+2}
shift<«{((xa)xpw)t+aiw}

APL TD 82.6s
» Timings: APL ROT | 203.9s
APL SHF | 236.9s

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Serial Relaxation in C Using IF/THEN/ELSE

for(j=0; j<N; j++) {
if (0==3) {
res[j] = v[j];
} else if ((N-1)==j) {
res[j] = v[j];
} else {
res[j] = (v[j-1]1 + v[j+11)/2.0;
}

APL TD 82.6s
» Timings: APL ROT | 203.9s
APL SHF | 236.9s

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Serial Relaxation in C Using IF/THEN/ELSE

for(j=0; j<N; j++) {
if (0==j) {
res[j]l = v[jl;
} else if ((N-1)==j) {
res[jl = v[jl;

} else {
res[jl = (v[j-11 + v[j+11)/2.0;
}
}
APL TD 82.6s
, Timings: APL ROT 203.9s
APIL SHF 236.9s

C IF/THEN/ELSE 16.3s

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Serial Relaxation in C Using Conditional Expressions

for(j=0; j<N; j++) {
res[j1 = (0==j) 7 v[jl
((N-1)==3) 7 v[j]
(v[j-11 + v[j+11)/2.0;

}
APL TD 82.6s
APL ROT 203.9s
» Timings: APL SHF 236.9s
C IF/THEN/ELSE 16.3s
C COND 16.4s

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Serial Relaxation in SAC Using Conditional Expressions

res = with {
([0l <= [j]1 < [ND)
(0==3) 7 v[j]
((N-1)==3) 7 v[j]
(v[j-11 + v[j+11)/2.0;
} : modarray(v);

APL TD 82.6s
APL ROT 203.9s
> Timings: APL SHF 236.9s
C IF/THEN/ELSE | 16.3s
C COND 16.4s
SAC COND 12.0s

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Serial Relaxation in SAC, Hand-Optimized

Can SAC do better?
Three data-parallel With-Loop partitions:

res = with {
([o] <= [j]1 < [1]D) : v[jl;
([1] <= [j]1 < [N-11)
(v[j-11 + v[j+11)/2.0;
(IN-1] <= [j]1 < [N]) : vI[j];

} : modarray(v);

APL TD 82.6s
APL ROT 203.9s
APL SHF 236.9s
» Timings: C IF/THEN/ELSE 16.3
C COND 16.4
SAC COND 12.0s
SAC HAND 5.0s

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Serial Relaxation using Abstract Expressionism and APEX

» Take and drop algorithm in APEX

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Serial Relaxation using Abstract Expressionism and APEX

» Take and drop algorithm in APEX
> TD<{(11w), (((2¢w)+ 2¢w)+2.0), 1tw}

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Serial Relaxation using Abstract Expressionism and APEX

» Take and drop algorithm in APEX
> TD<{(1tw), (((2¢w)+ 2+w)+2.0), 1tw}
» Approximate APEX-generated SAC code

(drop([2],v)+drop([-2],v))/2.0;
take([1],v)++mid++take([-1],Vv);

mid

res

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Serial Relaxation using Abstract Expressionism and APEX

Take and drop algorithm in APEX
TD<{(1tw), (((2+w)+ 2vw)+2.0), 1tw}
Approximate APEX-generated SAC code

(drop([2],v)+drop([-2]1,v))/2.0;
take ([1],v)++mid++take([-1],v);

v

v

v

mid

res

APL TD 82.6s
» Timings: SAC HAND | 5.9s
APEX TD 5.9s

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Serial Relaxation using Abstract Expressionism and APEX

Take and drop algorithm in APEX
TD<{(1tw), (((2+w)+ 2vw)+2.0), 1tw}
Approximate APEX-generated SAC code

(drop([2],v)+drop([-2]1,v))/2.0;
take ([1],v)++mid++take([-1],v);

v

v

v

mid

res

APL TD 82.6s
Timings: SAC HAND | 5.9s
APEX TD 5.9s

Identical inner loops for APEX TD and SAC HAND

v

v

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Serial Relaxation using Abstract Expressionism and APEX

ROT<«{N<«pw
m«(0=1N)V(N-1)=1N
(mxw)+(~m)x((10ow)+ 1¢w)+2.0}

m = (0 == iota(N)) | ((N-1) == iota(N));
res = (tod(m) * v) + tod(!m) =*
((rotate([1], v) + rotate([-1], v)))/2.0;

» Rotate algorithm in APEX, generated SAC code

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Serial Relaxation using Abstract Expressionism and APEX

ROT<«{N<«pw
m«(0=1N)V(N-1)=1N
(mxw)+(~m)x((10ow)+ 1¢w)+2.0}

m = (0 == iota(N)) | ((N-1) == iota(N));
res = (tod(m) * v) + tod(!m) =*
((rotate([1], v) + rotate([-1], v)))/2.0;

» Rotate algorithm in APEX, generated SAC code

APL ROT 82.6s
» Timings: SAC HAND | 5.9s
APEX ROT 5.9s

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Serial Relaxation using Abstract Expressionism and APEX

ROT<«{N<«pw
m«(0=1N)V(N-1)=1N
(mxw)+(~m)x((10ow)+ 1¢w)+2.0}

m = (0 == iota(N)) | ((N-1) == iota(N));
res = (tod(m) * v) + tod(!m) =*
((rotate([1], v) + rotate([-1], v)))/2.0;

» Rotate algorithm in APEX, generated SAC code

APL ROT 82.6s
» Timings: SAC HAND | 5.9s
APEX ROT 5.9s

» Identical inner loops for APEX ROT and SAC HAND

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Serial Relaxation using Abstract Expressionism and APEX

SHE « {N<«pPw
m<(0=1N)V(N-1)=1N
(mxw)+(~m)x((1 shift w)+ 1 shift w)+2}
shift«{((xa)xpw)rtaiw}

m = (0 == iota(N)) | ((N-1) == iota(N));
res = (tod(m) * v) + tod(!'m) *
((shift([1],v) + shift([-1],v)))/2.0;

» Shift algorithm in APEX-generated SAC code

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Serial Relaxation using Abstract Expressionism and APEX

SHE « {N<«pPw
m<(0=1N)V(N-1)=1N
(mxw)+(~m)x((1 shift w)+ 1 shift w)+2}
shift«{((xa)xpw)rtaiw}

m = (0 == iota(N)) | ((N-1) == iota(N));
res = (tod(m) * v) + tod(!'m) *
((shift([1],v) + shift([-1],v)))/2.0;

» Shift algorithm in APEX-generated SAC code

APL TD 82.6s
APL ROT 203.9s
APL SHF 236.9s
» Timings: SAC HAND 5.9s
APEX TD 5.9s
APEX ROT 5.9s
APEX SHIFT 5.9s

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Serial Relaxation using Abstract Expressionism and APEX

SHE « {N<«pPw
m<(0=1N)V(N-1)=1N
(mxw)+(~m)x((1 shift w)+ 1 shift w)+2}
shift«{((xa)xpw)rtaiw}

m = (0 == iota(N)) | ((N-1) == iota(N));
res = (tod(m) * v) + tod(!'m) *
((shift([1],v) + shift([-1],v)))/2.0;

» Shift algorithm in APEX-generated SAC code

APL TD 82.6s
APIL ROT 203.9s
APIL, SHF 236.9s
» Timings: SAC HAND 5.9s
APEX TD 5.9s
APEX ROT 5.9s
APEX SHIFT 5.9s

» ALL inner loops are identical!

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Why are Identical Inner Loops Noteworthy?

» APL source codes differ substantially

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Why are Identical Inner Loops Noteworthy?

» APL source codes differ substantially
» Very different SAC stdlib code for rotate, shift, take/drop

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Why are Identical Inner Loops Noteworthy?

» APL source codes differ substantially
» Very different SAC stdlib code for rotate, shift, take/drop
» E.g., number of With-Loops, setup code style

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Why are Identical Inner Loops Noteworthy?

>

APL source codes differ substantially
Very different SAC stdlib code for rotate, shift, take/drop
E.g., number of With-Loops, setup code style

v

v

v

See paper for stdlib code, here:
http://www.snakeisland.com/abstractexpressionism.pdf

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Serial Performance GFLOPS

» Hard to do better? SAC/APEX approach maximum GFLOPS

rate
Serial Relaxation Performance (One FPU)
' ! ! ! ! ! —F— Theoretical Peak Perf.
—_— SAC Hand
4 —6— APEX Rotate
—_— APEX Shift
——— APEX TakeDrop
—=— SAC Cond
—6— ClIf/then/else
3 —®— APL TakeDrop
—— APL Rotate
" —— APL Shift
~
o
o
T
5 2
1
0 9 9 . . . 2

1 2 3 4 5 6 7 8
Number of threads

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Serial Performance GFLOPS

» Hard to do better? SAC/APEX approach maximum GFLOPS
rate
» Let's look at parallel execution

Serial Relaxation Performance (One FPU)

! ! ! ! ! ! —B— Theoretical Peak Perf.
— SAC Hand
4 —— APEX Rotate
—— APEX Shift
—— APEX TakeDrop
—=— SAC Cond
—6— Clf/then/else
3 —®— APL TakeDrop
—@— APL Rotate
" —— APL Shift
~
o
o
T
5 2
1
0 ® @ @ @ @ .
1 2 3 4 5 6 7 8

Number of threads

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Parallel Relaxation Speedup in C

» Open MP

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Parallel Relaxation Speedup in C

» Open MP
» Basic idea: Introduce ceremonial rubbish into SOURCE code

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Parallel Relaxation Speedup in C

» Open MP
» Basic idea: Introduce ceremonial rubbish into SOURCE code

» See paper for ceremonial details

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Parallel Relaxation Speedup in C

» Open MP

» Basic idea: Introduce ceremonial rubbish into SOURCE code
» See paper for ceremonial details

» Basic idea: Introduce pragmas into SOURCE code

#pragma omp parallel for
after SOME for statements.

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Parallel Relaxation Speedup in C

v

Open MP
Basic idea: Introduce ceremonial rubbish into SOURCE code

v

v

See paper for ceremonial details

v

Basic idea: Introduce pragmas into SOURCE code
#pragma omp parallel for
after SOME for statements.

v

Compile with -fopenmp

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Parallel Relaxation Speedup in C Performance

» Timings: (higher is better)

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Parallel Relaxation Speedup in C Performance

» Timings: (higher is better)

Relaxation Performance

8 -
—e— ifc
6
2
a
S 4
[T
(&)
2 /
0 1 2 3 4 5 6 7 8
> Number of threads

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Optimized Parallel Relaxation in C

for(j=0; j<N; j++) {
if(0==j) {
res[j] = v[jl;
} else if ((N-1)==j) {
res[jl = v[jl;
} else {
res[jl = (v[j-11 + v[j+11)/2.0;
}

» Bright idea: Replace multiple "res[j] =" by "el ="

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Optimized Parallel Relaxation in C

for(j=0; j<N; j++) {
if(0==j) {
res[j] = v[jl;
} else if ((N-1)==j) {
res[jl = v[jl;
} else {
res[jl = (v[j-11 + v[j+11)/2.0;
}

» Bright idea: Replace multiple "res[j] =" by "el ="
» Bright idea: and add "res[j] = el;" after IF-statement

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Optimized Parallel Relaxation in C

for(j=0; j<N; j++) {
if(0==j) {
res[j] = v[jl;
} else if ((N-1)==j) {
res[jl = v[jl;
} else {
res[jl = (v[j-11 + v[j+11)/2.0;
}

> Bright idea: Replace multiple "res[j]1 =" by "el
» Bright idea: and add "res[j] = el;" after IF-statement

» Rationale: Eliminate multiple indexed assigns into "res"

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Optimized Parallel Relaxation in C

for(j=0; j<N; j++) {
if(0==j) {
res[j] = v[jl;
} else if ((N-1)==j) {
res[jl = v[jl;
} else {
res[jl = (v[j-11 + v[j+11)/2.0;
}

v

Bright idea: Replace multiple "res[j] =" by "el ="
Bright idea: and add "res[j] = el;" after IF-statement

v

v

Rationale: Eliminate multiple indexed assigns into "res"

v

This should improve instruction cache use

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Pessimized Parallel Relaxation in C

» Timings: (higher is better)

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Pessimized Parallel Relaxation in C

» Timings: (higher is better)

Relaxation Performance

8 T T T T T
—— ifc
ifcoptimized

6
<
o
g /
L
O

2 &‘

0 ‘ ‘ > : + +

1 2 3 4 5 6 7 8
> Number of threads

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Parallel Relaxation Slowdown in C Post-mortem

for(j=0; j<N; j++) {

if (0==3) {
el = v[jl;
} else if ((N-1)==j) {
el = v[jl;
} else {
el = (v[j-1] + v[j+11)/2.0;
}
res[j] = el;

» What went wrong?

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Parallel Relaxation Slowdown in C Post-mortem

for(j=0; j<N; j++) {

if (0==3) {
el = v[jl;
} else if ((N-1)==j) {
el = v[jl;
} else {
el = (v[j-1] + v[j+11)/2.0;
}
res[j] = el;

» What went wrong?
» el is shared, so it hops among all threads

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Parallel Relaxation Slowdown in C Post-mortem

for(j=0; j<N; j++) {

if (0==3) {
el = v[jl;
} else if ((N-1)==j) {
el = v[jl;
} else {
el = (v[j-1] + v[j+11)/2.0;
}
res[j] = el;

» What went wrong?
» el is shared, so it hops among all threads
» Bottom line: Bright idea not so bright (watch system monitor!)

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Parallel Relaxation Slowdown in C Post-mortem

for(j=0; j<N; j++) {

if (0==3) {
el = v[jl;
} else if ((N-1)==j) {
el = v[jl;
} else {
el = (v[j-1] + v[j+11)/2.0;
}
res[j] = el;

What went wrong?

el is shared, so it hops among all threads

Bottom line: Bright idea not so bright (watch system monitor!)
Bottom line: Writing parallel C code is NOT trivial

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

vV v v VY

Serial and Parallel Relaxation Performance

» Abstract expressionist APL matches best SAC code

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Serial and Parallel Relaxation Performance

» Abstract expressionist APL matches best SAC code
» SAC and APL beat C by 2.75X in serial environment

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Serial and Parallel Relaxation Performance

» Abstract expressionist APL matches best SAC code
» SAC and APL beat C by 2.75X in serial environment
» SAC and APL beat Open MP C by 1/3 in parallel environment

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Serial and Parallel Relaxation Performance

v

Abstract expressionist APL matches best SAC code

SAC and APL beat C by 2.75X in serial environment

SAC and APL beat Open MP C by 1/3 in parallel environment
NO changes to APL code for parallel execution, unlike C

v

v

v

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Serial and Parallel Relaxation Performance

Higher is better

Relaxation Performance

T ' ! ! J] —F— Theoretical Peak Perf.

16

14

shifts
hands
rotates

12

takedrops
hande

conds

ifs
condc

condstc

handstc
ifc

ifstc

bebttiedites

GFLOP/s
\

6
|
e
. -
1 2 3 4 5 6 7 8

Number of threads

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

SAC Keys to High-Performance FAL Compilation

» Provide purely functional Intermediate Language (IL)

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

SAC Keys to High-Performance FAL Compilation

» Provide purely functional Intermediate Language (IL)

» Preserve array semantics in IL

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

SAC Keys to High-Performance FAL Compilation

» Provide purely functional Intermediate Language (IL)
» Preserve array semantics in IL

» Scalarize small arrays, e.g.:

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

SAC Keys to High-Performance FAL Compilation

» Provide purely functional Intermediate Language (IL)
» Preserve array semantics in IL
» Scalarize small arrays, e.g.:

» in Gaussian Elimination pivot, replacing:
mat[rowa,rowb; J«mat[rowb, rowa;]
by
trow<«mat[rowa;] ¢ matl[rowa;l<«matl[rowb;]l ¢
mat[rowb; l«trow

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

SAC Keys to High-Performance FAL Compilation

» Provide purely functional Intermediate Language (IL)
» Preserve array semantics in IL
» Scalarize small arrays, e.g.:

» in Gaussian Elimination pivot, replacing:
mat[rowa,rowb; l«mat[rowb,rowa;]
by
trow«mat[rowa;] ¢ matlrowa;]l<«matlrowb;] ¢
mat[rowb; l«trow

v

... gives 2X speedup!

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

SAC Keys to High-Performance FAL Compilation

» Provide purely functional Intermediate Language (IL)
» Preserve array semantics in IL
» Scalarize small arrays, e.g.:

» in Gaussian Elimination pivot, replacing:
mat[rowa,rowb; l«mat[rowb,rowa;]
by
trow«mat[rowa;] ¢ matlrowa;]l<«matlrowb;] ¢
mat[rowb; l«trow

> ... gives 2X speedup!

» Do scalarization in the compiler, NOT in app source code.

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

SAC Keys to High-Performance FAL Compilation

Provide purely functional Intermediate Language (IL)
Preserve array semantics in IL
Scalarize small arrays, e.g.:

in Gaussian Elimination pivot, replacing:
mat[rowa,rowb; l«mat[rowb,rowa;]
by
trow«mat[rowa;] ¢ matlrowa;]l<«matlrowb;] ¢
mat[rowb; l«trow

... gives 2X speedup!
Do scalarization in the compiler, NOT in app source code.

Use array-based optimizations, e.g., with-loop folding (WLF)

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

SAC Keys to High-Performance FAL Compilation

» Provide purely functional Intermediate Language (IL)
» Preserve array semantics in IL
» Scalarize small arrays, e.g.:

» in Gaussian Elimination pivot, replacing:
mat[rowa,rowb; l«mat[rowb,rowa;]
by
trow«mat[rowa;] ¢ matlrowa;]l<«matlrowb;] ¢
mat[rowb; l«trow

> ... gives 2X speedup!
» Do scalarization in the compiler, NOT in app source code.
» Use array-based optimizations, e.g., with-loop folding (WLF)

» and others. ..

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

SAC Keys to High-Performance FAL Compilation

» Provide purely functional Intermediate Language (IL)
» Preserve array semantics in IL
» Scalarize small arrays, e.g.:

» in Gaussian Elimination pivot, replacing:
mat[rowa,rowb; l«mat[rowb,rowa;]
by
trow«mat[rowa;] ¢ matlrowa;]l<«matlrowb;] ¢
mat[rowb; l«trow

> ... gives 2X speedup!

» Do scalarization in the compiler, NOT in app source code.

» Use array-based optimizations, e.g., with-loop folding (WLF)
» and others. ..

» Stay tuned for the book!

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

This work was supported in part by grant EP/L00058X/1, from the
UK Engineering and Physical Sciences Research Council (EPSRC).
The late Ken lverson, an Albertan farm boy, had many excellent
insights, for which we are grateful. The excellent performance of
the sac2c compiler is due to the diligence of many researchers,
whose contributions can be found on the SaC web site at
http:sac-home.org. Our thanks to Philip Mucci and John D.
McCalpin for answering our AMD architecture questions. We also
thank the anonymous referees for their thoughtful comments.
Thank you! Questions?

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

	Acknowledgements

