Abstract Expressionism for Parallel Performance

Robert Bernecky!  Sven-Bodo Scholz?

1Snake Island Research Inc, Canada
bernecky@snakeisland.com

2Heriot-Watt University, UK
S.Scholz@hw.ac.uk

This paper was presented at PLDI 2015, Portland, OR.

August 31, 2015

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance



Abstract

Optimizing Functional Array Language (FAL) compilers for
languages such as APL (APEX) and SAC (sac2c), now produce
code that outperforms hand-optimized C in both serial and parallel
arenas, while retaining the abstract expressionist nature of
well-written FAL code.

In this talk, we demonstrate how FAL can now outperform C, in
both serial and OpenMP variants, by up to a third, with no source
code modifications. We also show that modern optimizers can
sometimes generate identical loops from substantially different FAL
source code.
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Talk Layout

» Serial performance: physics relaxation benchmark
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» Serial performance: physics relaxation benchmark

» Parallel performance: physics relaxation benchmark
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Talk Layout

» Serial performance: physics relaxation benchmark
» Parallel performance: physics relaxation benchmark

» Wild applause
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A Physics Benchmark: Vector Relaxation

» Inputs: temperatures (fixed) at each end of N-element rod

Dyalog APL/S-64 Version 14.1.25324

8-core AMD FX-8350 (Piledriver) @ 4013MHz, 32GB DRAM
Ubuntu 14.04LTS, sac2c Build #18605, gcc 4.8.2-19ubuntul
100000 iterations of relaxation kernel

100001-element vector argument, N
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A Physics Benchmark: Vector Relaxation

» Inputs: temperatures (fixed) at each end of N-element rod

» Output: End element temperatures remain unchanged;
Other element temps are arithmetic mean of neighbors

Dyalog APL/S-64 Version 14.1.25324

8-core AMD FX-8350 (Piledriver) @ 4013MHz, 32GB DRAM
Ubuntu 14.04LTS, sac2c Build #18605, gcc 4.8.2-19ubuntul
100000 iterations of relaxation kernel

100001-element vector argument, N
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A Physics Benchmark: Vector Relaxation

» Inputs: temperatures (fixed) at each end of N-element rod

» Output: End element temperatures remain unchanged;
Other element temps are arithmetic mean of neighbors

» Application: image processing, e.g., dust removal (2D)

Dyalog APL/S-64 Version 14.1.25324

8-core AMD FX-8350 (Piledriver) @ 4013MHz, 32GB DRAM
Ubuntu 14.04LTS, sac2c Build #18605, gcc 4.8.2-19ubuntul
100000 iterations of relaxation kernel

100001-element vector argument, N
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A Physics Benchmark: Vector Relaxation

» Inputs: temperatures (fixed) at each end of N-element rod
» Output: End element temperatures remain unchanged;
Other element temps are arithmetic mean of neighbors

» Application: image processing, e.g., dust removal (2D)

» Application: temperature distribution in a rod
Dyalog APL/S-64 Version 14.1.25324
8-core AMD FX-8350 (Piledriver) @ 4013MHz, 32GB DRAM
Ubuntu 14.04LTS, sac2c Build #18605, gcc 4.8.2-19ubuntul

100000 iterations of relaxation kernel
100001-element vector argument, N
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Abstract Expressionism in Dyalog APL

Three Ways to do Vector Relaxation in Dyalog APL

» Abstract: No tinkering of “memory"
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Abstract Expressionism in Dyalog APL

Three Ways to do Vector Relaxation in Dyalog APL

» Abstract: No tinkering of “memory"

» Expressions: No need for variables (convenience only)
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Abstract Expressionism in Dyalog APL

Three Ways to do Vector Relaxation in Dyalog APL

» Abstract: No tinkering of “memory"
» Expressions: No need for variables (convenience only)
» TD<{(1tw), (((2vw)+ 2yw)+2.0), 1tw}
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Abstract Expressionism in Dyalog APL

Three Ways to do Vector Relaxation in Dyalog APL

» Abstract: No tinkering of “memory"
» Expressions: No need for variables (convenience only)
> TD<{(1tw), (((2¢w)+ 2¢vw)+2.0), 1+tw}

» ROT<«{N<«pPw
m<(0=1N)V(N-1)=1N
(mxw)+(~m)x ((1Pw)+ 1¢w)+2.0}
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Abstract Expressionism in Dyalog APL

Three Ways to do Vector Relaxation in Dyalog APL

v

Abstract: No tinkering of “memory"

v

Expressions: No need for variables (convenience only)
TD<{(1tw), (((2¢w)+ 2vw)+2.0), 1tw}
ROT«{N<+Pw
m<(0=1N)V(N-1)=1N
(mxw)+(~m)*x ((10w)+ 1¢w)+2.0}
SHF <« {N<pPw
m<(0=1N)V(N-1)=1N
(mxw)+(~m)*x((1 shift w)+ 1 shift w)+2}
shift<{((xa)xpw)taiw}

v

v

v
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Serial Relaxation Timings in Dyalog APL

TD<«{(1tw), (((2¢w)+ 2¢w)+2.0), 1tw}
ROT<+{N<«pPw
m<(0=1N)V(N-1)=1N
(mxw)+(~m)x((10w)+ 10w)+2.0}
SHF « {N<«pw
m<(0=1N)V(N-1)=1N
(mxw)+(~m)x((1 shift w)+ 1 shift w)+2}
shift<«{((xa)xpw)t+aiw}

APL TD 82.6s
» Timings: APL ROT | 203.9s
APL SHF | 236.9s
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Serial Relaxation in C Using IF/THEN/ELSE

for( j=0; j<N; j++) {
if (0==3) {
res[j] = v[j];
} else if ((N-1)==j) {
res[j] = v[j];
} else {
res[j] = (v[j-1]1 + v[j+11)/2.0;
}

APL TD 82.6s
» Timings: APL ROT | 203.9s
APL SHF | 236.9s

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance



Serial Relaxation in C Using IF/THEN/ELSE

for( j=0; j<N; j++) {
if (0==j) {
res[j]l = v[jl;
} else if ((N-1)==j) {
res[jl = v[jl;

} else {
res[jl = (v[j-11 + v[j+11)/2.0;
}
}
APL TD 82.6s
, Timings: APL ROT 203.9s
APIL SHF 236.9s

C IF/THEN/ELSE 16.3s
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Serial Relaxation in C Using Conditional Expressions

for( j=0; j<N; j++) {
res[j1 = (0==j) 7 v[jl
((N-1)==3) 7 v[j]
(v[j-11 + v[j+11)/2.0;

}
APL TD 82.6s
APL ROT 203.9s
» Timings: APL SHF 236.9s
C IF/THEN/ELSE 16.3s
C COND 16.4s
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Serial Relaxation in SAC Using Conditional Expressions

res = with {
([0l <= [j]1 < [ND)
(0==3) 7 v[j]
((N-1)==3) 7 v[j]
(v[j-11 + v[j+11)/2.0;
} : modarray( v);

APL TD 82.6s
APL ROT 203.9s
> Timings: APL SHF 236.9s
C IF/THEN/ELSE | 16.3s
C COND 16.4s
SAC COND 12.0s
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Serial Relaxation in SAC, Hand-Optimized

Can SAC do better?
Three data-parallel With-Loop partitions:

res = with {
([o] <= [j]1 < [1]D) : v[jl;
([1] <= [j]1 < [N-11)
(v[j-11 + v[j+11)/2.0;
(IN-1] <= [j]1 < [N]) : vI[j];

} : modarray( v);

APL TD 82.6s
APL ROT 203.9s
APL SHF 236.9s
» Timings: C IF/THEN/ELSE 16.3
C COND 16.4
SAC COND 12.0s
SAC HAND 5.0s
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Serial Relaxation using Abstract Expressionism and APEX

» Take and drop algorithm in APEX
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Serial Relaxation using Abstract Expressionism and APEX

» Take and drop algorithm in APEX
> TD<{(11w), (((2¢w)+ 2¢w)+2.0), 1tw}
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Serial Relaxation using Abstract Expressionism and APEX

» Take and drop algorithm in APEX
> TD<{(1tw), (((2¢w)+ 2+w)+2.0), 1tw}
» Approximate APEX-generated SAC code

(drop([2],v)+drop([-2],v))/2.0;
take([1],v)++mid++take([-1],Vv);

mid

res
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Serial Relaxation using Abstract Expressionism and APEX

Take and drop algorithm in APEX
TD<{(1tw), (((2+w)+ 2vw)+2.0), 1tw}
Approximate APEX-generated SAC code

(drop([2],v)+drop([-2]1,v))/2.0;
take ([1],v)++mid++take([-1],v);

v

v

v

mid

res

APL TD 82.6s
» Timings: SAC HAND | 5.9s
APEX TD 5.9s
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Serial Relaxation using Abstract Expressionism and APEX

Take and drop algorithm in APEX
TD<{(1tw), (((2+w)+ 2vw)+2.0), 1tw}
Approximate APEX-generated SAC code

(drop([2],v)+drop([-2]1,v))/2.0;
take ([1],v)++mid++take([-1],v);

v

v

v

mid

res

APL TD 82.6s
Timings: SAC HAND | 5.9s
APEX TD 5.9s

Identical inner loops for APEX TD and SAC HAND

v

v
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Serial Relaxation using Abstract Expressionism and APEX

ROT<«{N<«pw
m«(0=1N)V(N-1)=1N
(mxw)+(~m)x((10ow)+ 1¢w)+2.0}

m = (0 == iota(N)) | ((N-1) == iota(N));
res = (tod(m) * v) + tod(!m) =*
((rotate([1], v) + rotate([-1], v)))/2.0;

» Rotate algorithm in APEX, generated SAC code
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Serial Relaxation using Abstract Expressionism and APEX

ROT<«{N<«pw
m«(0=1N)V(N-1)=1N
(mxw)+(~m)x((10ow)+ 1¢w)+2.0}

m = (0 == iota(N)) | ((N-1) == iota(N));
res = (tod(m) * v) + tod(!m) =*
((rotate([1], v) + rotate([-1], v)))/2.0;

» Rotate algorithm in APEX, generated SAC code

APL ROT 82.6s
» Timings: SAC HAND | 5.9s
APEX ROT 5.9s
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Serial Relaxation using Abstract Expressionism and APEX

ROT<«{N<«pw
m«(0=1N)V(N-1)=1N
(mxw)+(~m)x((10ow)+ 1¢w)+2.0}

m = (0 == iota(N)) | ((N-1) == iota(N));
res = (tod(m) * v) + tod(!m) =*
((rotate([1], v) + rotate([-1], v)))/2.0;

» Rotate algorithm in APEX, generated SAC code

APL ROT 82.6s
» Timings: SAC HAND | 5.9s
APEX ROT 5.9s

» Identical inner loops for APEX ROT and SAC HAND
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Serial Relaxation using Abstract Expressionism and APEX

SHE « {N<«pPw
m<(0=1N)V(N-1)=1N
(mxw)+(~m)x((1 shift w)+ 1 shift w)+2}
shift«{((xa)xpw)rtaiw}

m = (0 == iota(N)) | ((N-1) == iota(N));
res = (tod(m) * v) + tod(!'m) *
((shift([1],v) + shift([-1],v)))/2.0;

» Shift algorithm in APEX-generated SAC code
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Serial Relaxation using Abstract Expressionism and APEX

SHE « {N<«pPw
m<(0=1N)V(N-1)=1N
(mxw)+(~m)x((1 shift w)+ 1 shift w)+2}
shift«{((xa)xpw)rtaiw}

m = (0 == iota(N)) | ((N-1) == iota(N));
res = (tod(m) * v) + tod(!'m) *
((shift([1],v) + shift([-1],v)))/2.0;

» Shift algorithm in APEX-generated SAC code

APL TD 82.6s
APL ROT 203.9s
APL SHF 236.9s
» Timings: SAC HAND 5.9s
APEX TD 5.9s
APEX ROT 5.9s
APEX SHIFT 5.9s
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Serial Relaxation using Abstract Expressionism and APEX

SHE « {N<«pPw
m<(0=1N)V(N-1)=1N
(mxw)+(~m)x((1 shift w)+ 1 shift w)+2}
shift«{((xa)xpw)rtaiw}

m = (0 == iota(N)) | ((N-1) == iota(N));
res = (tod(m) * v) + tod(!'m) *
((shift([1],v) + shift([-1],v)))/2.0;

» Shift algorithm in APEX-generated SAC code

APL TD 82.6s
APIL ROT 203.9s
APIL, SHF 236.9s
» Timings: SAC HAND 5.9s
APEX TD 5.9s
APEX ROT 5.9s
APEX SHIFT 5.9s

» ALL inner loops are identical!
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Why are Identical Inner Loops Noteworthy?

» APL source codes differ substantially
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Why are Identical Inner Loops Noteworthy?

» APL source codes differ substantially
» Very different SAC stdlib code for rotate, shift, take/drop
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Why are Identical Inner Loops Noteworthy?

» APL source codes differ substantially
» Very different SAC stdlib code for rotate, shift, take/drop
» E.g., number of With-Loops, setup code style
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Why are Identical Inner Loops Noteworthy?

>

APL source codes differ substantially
Very different SAC stdlib code for rotate, shift, take/drop
E.g., number of With-Loops, setup code style

v

v

v

See paper for stdlib code, here:
http://www.snakeisland.com/abstractexpressionism.pdf
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Serial Performance GFLOPS

» Hard to do better? SAC/APEX approach maximum GFLOPS

rate
Serial Relaxation Performance (One FPU)
' ! ! ! ! ! —F— Theoretical Peak Perf.
—_— SAC Hand
4 —6—  APEX Rotate
—_— APEX Shift
———  APEX TakeDrop
—=— SAC Cond
—6—  ClIf/then/else
3 —®—  APL TakeDrop
—— APL Rotate
" —— APL Shift
~
o
o
T
5 2
1
0 9 9 . . . 2

1 2 3 4 5 6 7 8
Number of threads
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Serial Performance GFLOPS

» Hard to do better? SAC/APEX approach maximum GFLOPS
rate
» Let's look at parallel execution

Serial Relaxation Performance (One FPU)

! ! ! ! ! ! —B— Theoretical Peak Perf.
— SAC Hand
4 —— APEX Rotate
——  APEX Shift
——  APEX TakeDrop
—=— SAC Cond
—6—  Clf/then/else
3 —®—  APL TakeDrop
—@—  APL Rotate
" —— APL Shift
~
o
o
T
5 2
1
0 ® @ @ @ @ .
1 2 3 4 5 6 7 8

Number of threads
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Parallel Relaxation Speedup in C

» Open MP
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Parallel Relaxation Speedup in C

» Open MP
» Basic idea: Introduce ceremonial rubbish into SOURCE code
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Parallel Relaxation Speedup in C

» Open MP
» Basic idea: Introduce ceremonial rubbish into SOURCE code

» See paper for ceremonial details
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Parallel Relaxation Speedup in C

» Open MP

» Basic idea: Introduce ceremonial rubbish into SOURCE code
» See paper for ceremonial details

» Basic idea: Introduce pragmas into SOURCE code

#pragma omp parallel for
after SOME for statements.
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Parallel Relaxation Speedup in C

v

Open MP
Basic idea: Introduce ceremonial rubbish into SOURCE code

v

v

See paper for ceremonial details

v

Basic idea: Introduce pragmas into SOURCE code
#pragma omp parallel for
after SOME for statements.

v

Compile with -fopenmp
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Parallel Relaxation Speedup in C Performance

» Timings: (higher is better)
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Parallel Relaxation Speedup in C Performance

» Timings: (higher is better)

Relaxation Performance

8 -
—e— ifc
6
2
a
S 4
[T
(&)
2 /
0 1 2 3 4 5 6 7 8
> Number of threads
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Optimized Parallel Relaxation in C

for( j=0; j<N; j++) {
if(0==j) {
res[j] = v[jl;
} else if ((N-1)==j) {
res[jl = v[jl;
} else {
res[jl = (v[j-11 + v[j+11)/2.0;
}

» Bright idea: Replace multiple "res[j] =" by "el ="
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Optimized Parallel Relaxation in C

for( j=0; j<N; j++) {
if(0==j) {
res[j] = v[jl;
} else if ((N-1)==j) {
res[jl = v[jl;
} else {
res[jl = (v[j-11 + v[j+11)/2.0;
}

» Bright idea: Replace multiple "res[j] =" by "el ="
» Bright idea: and add "res[j] = el;" after IF-statement
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Optimized Parallel Relaxation in C

for( j=0; j<N; j++) {
if(0==j) {
res[j] = v[jl;
} else if ((N-1)==j) {
res[jl = v[jl;
} else {
res[jl = (v[j-11 + v[j+11)/2.0;
}

> Bright idea: Replace multiple "res[j]1 =" by "el
» Bright idea: and add "res[j] = el;" after IF-statement

» Rationale: Eliminate multiple indexed assigns into "res"

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance



Optimized Parallel Relaxation in C

for( j=0; j<N; j++) {
if(0==j) {
res[j] = v[jl;
} else if ((N-1)==j) {
res[jl = v[jl;
} else {
res[jl = (v[j-11 + v[j+11)/2.0;
}

v

Bright idea: Replace multiple "res[j] =" by "el ="
Bright idea: and add "res[j] = el;" after IF-statement

v

v

Rationale: Eliminate multiple indexed assigns into "res"

v

This should improve instruction cache use
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Pessimized Parallel Relaxation in C

» Timings: (higher is better)
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Pessimized Parallel Relaxation in C

» Timings: (higher is better)

Relaxation Performance
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> Number of threads
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Parallel Relaxation Slowdown in C Post-mortem

for( j=0; j<N; j++) {

if (0==3) {
el = v[jl;
} else if ((N-1)==j) {
el = v[jl;
} else {
el = (v[j-1] + v[j+11)/2.0;
}
res[j] = el;

» What went wrong?
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Parallel Relaxation Slowdown in C Post-mortem

for( j=0; j<N; j++) {

if (0==3) {
el = v[jl;
} else if ((N-1)==j) {
el = v[jl;
} else {
el = (v[j-1] + v[j+11)/2.0;
}
res[j] = el;

» What went wrong?
» el is shared, so it hops among all threads
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Parallel Relaxation Slowdown in C Post-mortem

for( j=0; j<N; j++) {

if (0==3) {
el = v[jl;
} else if ((N-1)==j) {
el = v[jl;
} else {
el = (v[j-1] + v[j+11)/2.0;
}
res[j] = el;

» What went wrong?
» el is shared, so it hops among all threads
» Bottom line: Bright idea not so bright (watch system monitor!)
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Parallel Relaxation Slowdown in C Post-mortem

for( j=0; j<N; j++) {

if (0==3) {
el = v[jl;
} else if ((N-1)==j) {
el = v[jl;
} else {
el = (v[j-1] + v[j+11)/2.0;
}
res[j] = el;

What went wrong?

el is shared, so it hops among all threads

Bottom line: Bright idea not so bright (watch system monitor!)
Bottom line: Writing parallel C code is NOT trivial

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance
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Serial and Parallel Relaxation Performance

» Abstract expressionist APL matches best SAC code
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Serial and Parallel Relaxation Performance

» Abstract expressionist APL matches best SAC code
» SAC and APL beat C by 2.75X in serial environment
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Serial and Parallel Relaxation Performance

» Abstract expressionist APL matches best SAC code
» SAC and APL beat C by 2.75X in serial environment
» SAC and APL beat Open MP C by 1/3 in parallel environment

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance



Serial and Parallel Relaxation Performance

v

Abstract expressionist APL matches best SAC code

SAC and APL beat C by 2.75X in serial environment

SAC and APL beat Open MP C by 1/3 in parallel environment
NO changes to APL code for parallel execution, unlike C

v

v

v
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Serial and Parallel Relaxation Performance

Higher is better

Relaxation Performance

T ' ! ! J] —F— Theoretical Peak Perf.
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SAC Keys to High-Performance FAL Compilation

» Provide purely functional Intermediate Language (IL)

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance



SAC Keys to High-Performance FAL Compilation

» Provide purely functional Intermediate Language (IL)

» Preserve array semantics in IL
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SAC Keys to High-Performance FAL Compilation

» Provide purely functional Intermediate Language (IL)
» Preserve array semantics in IL

» Scalarize small arrays, e.g.:
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SAC Keys to High-Performance FAL Compilation

» Provide purely functional Intermediate Language (IL)
» Preserve array semantics in IL
» Scalarize small arrays, e.g.:

» in Gaussian Elimination pivot, replacing:
mat[rowa,rowb; J«mat[rowb, rowa; ]
by
trow<«mat[rowa;] ¢ matl[rowa;l<«matl[rowb;]l ¢
mat[rowb; l«trow
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SAC Keys to High-Performance FAL Compilation

» Provide purely functional Intermediate Language (IL)
» Preserve array semantics in IL
» Scalarize small arrays, e.g.:

» in Gaussian Elimination pivot, replacing:
mat[rowa,rowb; l«mat[rowb,rowa;]
by
trow«mat[rowa;] ¢ matlrowa;]l<«matlrowb;] ¢
mat[rowb; l«trow

v

... gives 2X speedup!
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SAC Keys to High-Performance FAL Compilation
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» in Gaussian Elimination pivot, replacing:
mat[rowa,rowb; l«mat[rowb,rowa;]
by
trow«mat[rowa;] ¢ matlrowa;]l<«matlrowb;] ¢
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> ... gives 2X speedup!

» Do scalarization in the compiler, NOT in app source code.

» Use array-based optimizations, e.g., with-loop folding (WLF)
» and others. ..

» Stay tuned for the book!
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