

Learn APL on the $5 Raspberry Pi
Your fast track from ideas to code

Romilly Cocking

This book is for sale at http://leanpub.com/learnapl

This version was published on 2017-02-13

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License

http://leanpub.com/learnapl
http://leanpub.com/
http://leanpub.com/manifesto
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US

Tweet This Book!
Please help Romilly Cocking by spreading the word about this book on Twitter!

The suggested hashtag for this book is #learnaplonthe$5pi.

Find out what other people are saying about the book by clicking on this link to
search for this hashtag on Twitter:

https://twitter.com/search?q=#learnaplonthe$5pi

http://twitter.com
https://twitter.com/search?q=%23learnaplonthe\protect \char "0024\relax 5pi
https://twitter.com/search?q=%23learnaplonthe\protect \char "0024\relax 5pi

This book is dedicated to Kenneth Iverson, who gave us APL, and Eben Upton, who
gave us the Raspberry Pi.

Contents

Learn APL - book extract . 1

Chapter 1 . 2
Getting started . 2

Special APL characters . 4

Multiplication and division . 5
Array programming without explicit loops 5
More about the RIDE . 6
Assigning values to variables . 6
A shortcut to counting . 7
Illuminate your code - use comments . 8
Catenate . 9
System commands . 9
Finishing your session . 11
Exercises . 12

Having fun? . 13

Appendix 1 . 14
Installing APL on the Raspberry Pi . 14

Learn APL - book extract
This is an extract from a new Introductory book on APL. It features Dyalog’s free
implementation on the Raspberry Pi, but you can also use it if you are learning Dyalog
APL on Microsoft Windows, Mac OS or other Linux systems.

I hope it will motivate you to take a look at this powerful language and help you to
get started.

The book is ideal if you are entering the Dyalog annual problem-solving competition1.

An early access version of the book is available on Leanpub2.

It’s about 40% complete at the moment and if you buy it now you will get free access
to future updates.

The book should be complete by the end of April 2017.

All Leanpub purchases offer an unconditional 45-day money-back guarantee.

There’s a slower-paced, more detailed, and much longer textbook called Mastering
Dyalog APL by Bernard Legrand. It’s written for Dyalog for Microsoft Windows, but the
language elements (which form most of the content) apply to all platforms.

You can download a free PDF3 of Bernard’s book or buy a print-on-demand version
on Amazon4

The next chapter will give you a first taste of the language and its development
environment.

Have fun!
1http://www.dyalog.com/student-competition.htm
2https://leanpub.com/learnapl
3http://www.dyalog.com/uploads/documents/MasteringDyalogAPL.pdf
4http://www.amazon.co.uk/Mastering-Dyalog-APL-Complete-Introduction/dp/0956463800/ref=sr_1_1?ie=UTF8&qid=

1387290291&sr=8-1&keywords=mastering+dyalog

http://www.dyalog.com/student-competition.htm
https://leanpub.com/learnapl
http://www.dyalog.com/uploads/documents/MasteringDyalogAPL.pdf
http://www.amazon.co.uk/Mastering-Dyalog-APL-Complete-Introduction/dp/0956463800/ref=sr_1_1?ie=UTF8&qid=1387290291&sr=8-1&keywords=mastering+dyalog
http://www.amazon.co.uk/Mastering-Dyalog-APL-Complete-Introduction/dp/0956463800/ref=sr_1_1?ie=UTF8&qid=1387290291&sr=8-1&keywords=mastering+dyalog
http://www.dyalog.com/student-competition.htm
https://leanpub.com/learnapl
http://www.dyalog.com/uploads/documents/MasteringDyalogAPL.pdf
http://www.amazon.co.uk/Mastering-Dyalog-APL-Complete-Introduction/dp/0956463800/ref=sr_1_1?ie=UTF8&qid=1387290291&sr=8-1&keywords=mastering+dyalog
http://www.amazon.co.uk/Mastering-Dyalog-APL-Complete-Introduction/dp/0956463800/ref=sr_1_1?ie=UTF8&qid=1387290291&sr=8-1&keywords=mastering+dyalog

Chapter 1
Getting started

Time to start APL - and start learning this fun, expressive language!

To begin your first APL session on a Raspberry Pi, run Dyalog from the Programming
menu.

You should see a screen like this. That’s the RIDE (APL’s development environment).

Dyalog menu

The RIDE includes a REPL5 - a Read-Evaluate-Print-Loop.

That means that you can write code and try it out right away. That’s a great way to
learn a language, and it’s also a great way to develop software.

5https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop

https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop

Chapter 1 3

For now, don’t worry about the keyboard-like display at the top of the RIDE. You’ll find
out about that a little later.

In the examples that follow, the code that you type is indented by six spaces. Once
you start your session you’ll see that APL inserts those spaces for you when it’s your
turn to type.

APL’s output is not indented, so you can see what you should type and what you
should expect APL to output.

So - here goes. Type:

2 + 2
4

Try some more:

10 - 4
6

4 - 5
¯1

Note how APL represents negative numbers using a ¯ symbol. The ¯ (called high
minus) is part of the way you write the value negative one.

That’s different from the - symbol (called minus) which tells APL to do a subtraction.

Plus and minus are primitive functions in APL. What about multiply and divide? Of
course APL does those too.

APL uses the same symbols that I was taught at school: × for multiply, and ÷ for divide.

Special APL characters
There are two ways that you can type the special APL characters when you are writing
code.
Remember that keyboard that’s displayed at the top of the RIDE window? If you hover
your mouse over an APL symbol, the RIDE will tell you its name and what it does.
If you mouse-click on the symbol, the RIDE will type that symbol for you in your APL
session.
Alternatively you can type APL symbols directly from the keyboard.
Here’s the layout of the UK APL keyboard with APL symbols added.

Dyalog APL keyboard

Use the Windows key to help you type APL symbols.

• Type Windows- and you should see a × symbol
• Type Windows-equals to get the ÷ sign.
• Type Windows-shift-equals to get the � sign.

Multiplication and division
Time to try out multiplication and division.

2 × 3
6

5÷2
2.5

12÷4
3

4÷3
1.333333333

Now for something rather different. Try the experiment below:

1 2 3 + 4 5 6
5 7 9

What’s going on?

Array programming without explicit loops

APL treats the two lists of numbers as vectors and it adds the corresponding elements
together.

A lot of calculations need to be done on vectors, and APL’s built-in looping makes this
really easy.

Try some more examples:

2 3 4 5 × 1 2 1 2
2 6 4 10

3 4 2 5 - 4 0 ¯1 3
¯1 4 3 2

120 ÷ 2 3 4 5 6
60 40 30 24 20

0.1 0.1 0.1 0.1 × 3 5 4 2
0.3 0.5 0.4 0.2

That last example works, but it’s a bit tedious to type. Fortunately there is an easy
shortcut.

Multiplication and division 6

0.1 + 3 5 4 2
3.1 5.1 4.1 2.1

If you ask APL to multiply (or add, or subtract, or divide) a number on its own and a
vector of numbers, APL will use the single number repeatedly. A single number on its
own is called a scalar.

The repeated use of a scalar when you’re adding it to a vector is called singleton
extension.

What happens if you try to add two vectors of different lengths?

1 2 3 + 4 5 6 7
LENGTH ERROR

1 2 3+4 5 6 7
∧

APL doesn’t know what you want to do, so it treats the expression as an error.

Don’t worry about causing APL errors. APL will try to tell you what went
wrong, and you won’t break anything :)

More about the RIDE

The RIDE has a lot of useful features. We won’t cover them all here but one is so
valuable when you’re learning that we have to mention it.

Try moving your cursor up a few lines to an APL expression that you entered earlier
in your session. Now make a change to the line and press enter.

The RIDE will restore the version you typed earlier and enter your changed version
at the bottom of your session, so you can make a small change to something without
having to retype it all.

Really useful!

Let’s go back to APL.

Assigning values to variables

It would be rather tedious if you had to type values in to APL every time you wanted
to use them. Fortunately, you can tell APL to remember values you want to use
repeatedly.

Suppose you are currently 23. Type:

Multiplication and division 7

age ← 23
age + 10

33

The first line you typed told APL to assign the value 23 to a new variable age.

In the second line you asked APL to add 10 to your current age, and APL displayed
the result.

Notice that APL will display a result if you don’t tell it what to do with it.

APL variables can contain vectors as well as scalars.

ages ← 12 23 19
ages

12 23 19
ages×2

24 46 38

A shortcut to counting

In one of the earlier examples you added the vector 1 2 3 to the vector 4 5 6.

Mathematicians call vectors like that arithmetic progressions, and you may
well need to use them in your software.

APL has a particularly easy way to create arithmetic progressions using the ⍳ function.

Here are some examples:

⍳3
1 2 3

3 + ⍳3
4 5 6

(⍳3) + 3 + ⍳3
5 7 9

2 × ⍳5
2 4 6 8 10

By default APL starts counting at one. In Chapter 6 you will see a way to get
APL to start counting at zero. Some programs are simpler when written that
way.

Multiplication and division 8

Illuminate your code - use comments

As you get more experienced in APL programming the code you write will get more
complex.

Most code is read more often than it is written, so you should consider documenting
it using comments.

The APL symbol for a comment is ⍝ - often called lamp because it’s intended
to illuminate your code.

Whenever the APL interpreter encounters a comment it ignores the rest of that line.
You’ll find two styles of comment widely used in APL code.

1. A stand-alone comment starts with a lamp symbol. That means that nothing on
that line will get executed.

2. An in-line comment follows some executable code on the same line.

The comments should explain what the code does or why it is written that way.

When should you comment? The Three AM rule

I first heard this tip at a conference many yeas ago. It’s called The three AM rule, and
it applies to programming in any language. Here’s how I once heard the presenter
explain the rule:

Imagine that you’re asleep at home at 3 o’clock in the morning.

The phone rings. And rings. And rings.

You answer it.

‘Hi there. The production system has just fallen over. Can you fix it?’

When you take a look at the application, what style of code do you hope
you’ll see? That’s the way you should code.

That’s the three AM rule: write code that you, or other developers, would be relieved
to see if they are trying to fix a problem at three o’clock in the morning.

If comments would help you or others to read your code at 3 AM, add those
comments!

Multiplication and division 9

Catenate

So far you’ve seen ways of combining vectors based on arithmetic functions.

There’s another common way to create new arrays from old: by joining them together.

In APL, a , (comma) is the catenate function.

Try it out:

1 2 3, 6 5 4
1 2 3 6 5 4

1, 4 7 11
1 4 7 11

5 3 7, 0
5 3 7 0

2 3, 5 6 8
2 3 5 6 8

You can catenate any two vectors, or a vector and a scalar, or a scalar with a vector.
Later in the book you will see that there are even more possibilities.

System commands

If you’ve been working on an APL session for a while it can be useful to check what
variables you have created.

APl has a system command to do that. System commands in APL don’t create values,
but they do other useful things. One such command will tell you the names of all the
variables you have defined. Try it out:

)vars
age ages

In APL, system commands start with an open right parenthesis). The vars command
tells you the name of the variables that are currently defined.

When you work in an APL session, the variables you create are held in what APL calls
the current workspace.

A workspace can also contain functions and other things. We’ll cover these later in
this book.

When you have finished an APL session, you can save the contents of your workspace,
and return to it when next you use APL. Try the following commands:

Multiplication and division 10

)wsid course
was CLEAR WS

)save
course saved Sun May 22 17:09:17 2016

What did that do?

The first command gave a name to your workspace. Previously it had no name, so APL
called it CLEAR WS (a clear workspace).

Then you asked APL to save your workspace. It stored it on disk. If you look in your
home directory, you should see a file called course.dws.

Windows may hide the dws extension.

It’s a binary file, so don’t try to edit it!

Names are useful. If you are working on more than one project, you can have several
workspaces, one for each project. Each has a name which will help you find the
workspace you want to use for any given session.

You can find out all your local workspaces using the)lib command.

Here’s what happened when I ran it:

)lib
.

startapl.dws
/opt/mdyalog/15.0/32/unicode/ws

apl2in.dws apl2pcin.dws buildse.dws conga.dws ddb.d\
ws

dfns.dws display.dws eval.dws fonts.dws ftp.d\
ws

groups.dws isolate.dws loaddata.dws max.dws min.dws ops.d\
ws

postscri.dws quadna.dws rconnect.dws salt.dws
sharpplot.dws smdemo.dws smdesign.dws smtutor.dws
sqapl.dws tube.dws tutor.dws util.dws
xfrcode.dws xlate.dws

/opt/mdyalog/15.0/32/unicode/samples/fun
intro.dws life.dws sudoku.dws

Wow! Lots of workspaces.

The first two lines show that there is a workspace called startapl.dws in the current
directory.

Multiplication and division 11

That’s a workspace that I saved earlier. It contains the functions and variables used
in this course.

The next line shows that there is a directory called /opt/mdyalog/15.0/32/unicode/ws
which contains 31 workspaces. That directory and the workspaces in it are created
by Dyalog during the installation process.

There’s also a Dyalog directory called /opt/mdyalog/15.0/32/unicode/samples/fun
which contains some fun workspaces including John Scholes’ implementation of
Conway’s Game of Life6 and the game of sudoku7.

Finishing your session

Once you’ve finished a session you can close APL down by typing a system command:

)off

APL will close down.

If you want to get your work back, restart APL from the Programming menu.

You will start a new session with a new clear workspace. To resume your work you
must load your saved workspace.

Type:

)load course
./course saved Sun May 22 17:09:17 2016

Now you can check that the workspace still contains your variable:

)vars
age ages

age
23

Well done! You’ve taken the first step to mastering APL. Now try the following simple
exercises to consolidate what you’ve learned.

6https://www.youtube.com/watch?v=a9xAKttWgP4
7https://www.youtube.com/watch?v=DmT80OseAGs

https://www.youtube.com/watch?v=a9xAKttWgP4
https://www.youtube.com/watch?v=a9xAKttWgP4
https://www.youtube.com/watch?v=DmT80OseAGs
https://www.youtube.com/watch?v=a9xAKttWgP4
https://www.youtube.com/watch?v=DmT80OseAGs

Multiplication and division 12

Exercises

1.1

Create a variable called income containing the vector 10000 11570 11000 12550.
(Imagine this contain someone’s income for the last four quarters of the year.)

Create another variable containing the vector 7250 8345 9547 12650. This might
show how much that person spent in each quarter.

Now calculate and display what they saved each quarter. Of course, if they spent more
than they earned the savings will be negative.

1.2

Create a variable weights containing the numbers 10.2 8,3 7.5 and convert from
pounds to kilogrammes.

A pound is roughly 0.45 kilogrammes.

Having fun?
That’s the end of the sample content. If you want more, you can buy the early access
version of the book at Leanpub8.

8https://leanpub.com/learnapl

https://leanpub.com/learnapl
https://leanpub.com/learnapl

Appendix 1
Installing APL on the Raspberry Pi

You can download and install a copy of APL for the Raspberry Pi from Dyalog. It’s free
for personal use. If you want to use it for work, or create a product that you or others
sell, you will need to get a commercial license.

You can install and run Dyalog APL on the following Raspberry Pi versions:

Pi 1 Model A
Pi 1 Model A+
Pi 1 Model B
Pi 1 Model B+
Pi 2 Model B
Pi 3 Model B
Pi zero (all versions)

The current version (15.0) of Dyalog APL runs on the jessie version of Raspbian.

You can find installation instructions here9.

9http://packages.dyalog.com/

http://packages.dyalog.com/
http://packages.dyalog.com/

	Table of Contents
	Learn APL - book extract
	Chapter 1
	Getting started

	Special APL characters
	Multiplication and division
	Array programming without explicit loops
	More about the RIDE
	Assigning values to variables
	A shortcut to counting
	Illuminate your code - use comments
	Catenate
	System commands
	Finishing your session
	Exercises

	Having fun?
	Appendix 1
	Installing APL on the Raspberry Pi

