
Page 1 of 16

2011 International APL Programming Contest
Sponsored by: Fiserv (USA), SimCorp (Denmark), APL Italiana (Italy), and Dyalog (UK)

Welcome!

Thank you for your interest in participating in this year’s contest! This is the third International APL Programming

contest, and the format has been updated from previous years. This year’s contest consists of 5 problems across

a diverse set of disciplines including airline route analysis, DNA sequencing, image processing, and text searching.

Each problem has 2 or more tasks. We would like to thank last year’s winner, Ryan Tarpine, for his help in

developing this year’s problems.

How To Submit Your Entry

1. Download the Contest2011.dws workspace from the contest webpage.

2. There are 5 namespaces named Problem1 through Problem5 each of which contains the required data

for its problem as well as stub functions that you can use to start coding your solutions. You can use the

supplied stub functions, or code your own as long as you use the names as described in the task

descriptions.

3. Make sure you save the workspace to save your work.

4. When you’re satisfied with your solutions, run the function #.SubmitMe. Enter the requested

information and click the Save button. This will create an APL script file named Contest2011.dyalog in

the directory you specified.

5. Email the Contest2011.dyalog file to Contest2011@dyalog.com.

6. Questions about the contest can be sent to Contest2011@dyalog.com

Good luck!

mailto:Contest2011@dyalog.com
mailto:Contest2011@dyalog.com

Page 2 of 16

Problem 1 – Take To The Air
Background

You’ve been put in charge of both the marketing and financial planning of a small airline. You have been supplied

a 2 column table of the current segments (pairs of airports) between which your airline provides service. The

order of the columns is not significant as your airline provides service in both directions of each segment. This

table can be found in the contest workspace in the variable #.Problem1.Segments. A table of all of the

airports is provided in the variable #.Problem1.Airports, whose first column contains the airport name and

the second and third columns contain the latitude and longitude for the airport.

Task 1 – Build an adjacency matrix for the segments.

The first step is to put the data into a format that’s easier to work with. Write a function named adjacency

which takes the Segments and Airports table as its arguments and returns an M x M Boolean matrix representing

the connectivity of the segments where M is the number of distinct airports.

In this 4 airport example:

TestSegments
A B
B C
B D
C D

TestAirports
A 33 56 33 N 118 24 29 W
B 41 58 46 N 87 54 16 W
C 40 38 23 N 73 46 44 W
D 51 28 39 N 0 27 41 W

 TestAirports adjacency TestSegments
0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

The adjacency matrix should have a 1 in row i and column j if there is a segment between the ith and jth airports in

the airports table.

Task 2 – Getting There From Here

From a marketing viewpoint, you want to advertise every possible destination that a passenger can reach,

regardless of whether he/she must take one, two, three, or even more flights. For example, if you have a flight

from airport A to airport B, and another flight from airport B to airport C, then you want to advertise that a

passenger can fly to airport C from airport A. Write a function allTrips which takes the adjacency matrix from

task 1 and returns another M x M Boolean matrix which has a 1 in the ith row and jth column if and only if someone

can travel between the ith airport and the jth airport using one or more flights. In our example from above, you

can get to any airport from any other airport.

 A

 B

 C

 D

Page 3 of 16

 allTrips TestAirports adjacency TestSegments
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

Task 3 – Minimize cost

Due to rising fuel costs and budget constraints, you would like minimize cost by reducing the number of segments

your airline services while still maintaining all the destinations a passenger can currently reach. In the example

above, any of one the segments B-C, B-D, or C-D could be removed without affecting the airports one can travel

to, though they may have to travel through more segments to get to their destination, but which one will

minimize the cost? This task has 2 sub-tasks.

Subtask 3a – Go The Distance

The latitude and longitude values in the Airports table can be used to calculate each segment’s length. The

formula for distance to be used is:

)))))))

where Lat1, Lat2 and Long1,Long2 are the latitudes and longitudes for the two points (6371 is the radius of the

Earth in kilometers). The latitudes and longitudes for each airport are found in the last 2 columns of the Airports

table. You will need to convert the lat/long from its degree/minute/second format into decimal degree. Latitudes

in the Southern hemisphere and longitudes in the Western hemisphere should have negative values. The

trigonometric function in APL (○) uses values expressed in radians. Your task is to write a function distance

which takes a lat/long for its left and right arguments and returns their distance apart in kilometers. You may

want to write a function to convert from degree/minute/second format to decimal degree. For example:

 dms2dd 34 56 42 'S' ⍝ dms to decimal degrees
¯34.94499999999999
 ((34 56 42 'S')(138 31 50 'E')) distance ((3 32 35 'N')(76 22 53 'W'))
15004.00859491403

Subtask 3b – Reduce Segments

In simple terms, the cost of a segment is proportional to its distance. Your task is to minimize the overall cost. To

arrive at a minimum cost Armed with your adjacency matrix and Your task is to write a function,

reduceSegments which takes the Airports and Segments tables as its arguments and returns two Segments

tables – the original Segments table with a distance column added and the new, reduced, Segments table. Using

the example tables:

 TestAirports reduceSegments TestSegments
 A B 15004.00859491403 A B 15004.00859491403
 B C 8784.45815117948 B C 8784.45815117948
 B D 14987.1840396508 C D 8812.504030110875
 C D 8812.504030110875

Page 4 of 16

Problem 2 – What’s in a Name?
Background

You have been hired to monitor blog and forum references on the internet to your employer’s company name

and executives’ names. You know a simple internet search will not find what you're looking for because people

often misspell the names. You decide to search the text yourself looking for mentions of the names allowing for a

certain number of mismatches.

Task 1 – Simulate Misspellings

You want to begin by simulating examples that you will test your algorithm on. You plan to take company

documents, introduce misspellings, and see whether you can still find the names. Write a function addNoise

which takes two arguments. The right argument is a string to which the misspellings will be added. The left

argument is a number between 0 and 1 representing the rate. addNoise should, with the probability specified

by the left argument, replace each letter in the string with the letter 'X'. For example, if the rate is 0.05, then on

average 5% of the letters should be replaced with the letter X.

Example:

 0.1 addNoise 'Jack Johnson'
Xack JohXson

Task 2 – Matching Mismatches

Write a function patFind which takes two arguments. The left argument is text in which to look for the pattern.

The right argument is a vector of two elements, a pattern and a tolerance. The pattern is the word or phrase to

search for in the larger text. The search should be case insensitive. The tolerance is the maximum number of

mismatches to allow. Your function should return a a table whose first column contains the positions in the text

where the pattern matches and second column contains the matched pattern from the text.

Example:

 'I think Jakc Jonnson is the greatest' patFind 'Jack Johnson' 3
 9 Jakc Jonnson
 'I think Jakc Jonnson is the greatest' patFind 'Jack Johnson' 2

The contest workspace contains a character vector #.Problem2.SampleText which contains a number of

spelling variations of the name ” VanDerHeusen”. Task 2 will be judged on the results of searching the sample

text for (mis)matches on ”VanDerHeusen” as follows:

 SampleText patFind 'VanDerHeusen' 3

Page 5 of 16

Problem 3 – It’s All About Image
Background

You’ve recently formed a startup with some associates to develop and sell an image manipulation program in APL.

You have an important upcoming meeting with potential investors and want to develop a simple demo to

convince them how using APL gives you an edge in the market. You decide to present and demonstrate code to

scale and blur images, confident that when they see how appropriate APL is, they will invest heavily.

The color of a pixel is typically represented by three numbers, representing the amount of red, green, and blue in

the pixel. Each number ranges between 0 and 255, where 0 means none of that color while 255 means full

intensity. In this manner, the color black is represented by the three numbers (0,0,0), red is (255,0,0), green is

(0,255,0), and white is (255,255,255). One way of computing a single number between 0 and 255 which

represents a shade of gray similar to the original color is to simply find the average of the three numbers.

These three numbers are often stored as one number by combining them using the formula 256^2*RED +

256*GREEN + BLUE. So black becomes 0, red becomes 16711680, green becomes 65280, and white

becomes 16777215. In this manner, all colors can be represented by a number between 0 and 16777215.

The contest workspace contains a sample picture in the variable #.Problem3.Logos, and a simple function

#.Problem3.show, that displays the picture formed by a matrix of pixels in RGB format passed as the argument.

You can use Logos to see the effects of your results from the tasks below.

 show Logos ⍝ displays Logos

Task 1 – Shades of Gray

For simplicity, you decide to work first with grayscale only (not the full range of colors). So you begin by writing a

function to convert any color to a simple grayscale value between 0 and 1, where 0 means black, 1 means white,

and numbers in between represent various shades of gray.

Write a function toGray which takes an array of these numbers representing all three colors, splits it into its

three parts, takes the average, and then divides this single number by 255 to yield a number between 0 and 1.0

representing the gray level of that color.

Example:

 toGray 0 16711680 65280 16777215
0 0.3333333333 0.3333333333 1

Page 6 of 16

Task 2 – Back to RGB

After converting an image to grayscale with toGray, we need to convert the values between 0 and 1 back into

RGB values so that they can be displayed by show. Write a function toRGB which, given an array of numbers

between 0 and 1, converts them to integers (N) between 0 and 255 and returns an array of numbers between 0

and 16777215 representing a pixel whose red, green, and blue are all equal to the values of N.

Example:

 toRGB 0 (÷3) 1
0 5592405 16777215
 toGray toRGB ÷3
0.3333333333
 toRGB toGray 5592405
5592405
 show toRGB toGray Logos

Task 3 – Off The Scale

To scale an image, write a function scale which takes two arguments. Its left argument should be an array of 2

integers - the first element is the vertical scaling facgtor (i.e. the number of copies of each row to make) and the

second element is the horizontal scaling factor (i.e. number of copies of each column to make). The right

argument of scale is the image to scale.

Example:

 2 3 scale 3 3⍴1+⍳9
1 1 1 2 2 2 3 3 3
1 1 1 2 2 2 3 3 3
4 4 4 5 5 5 6 6 6
4 4 4 5 5 5 6 6 6
7 7 7 8 8 8 9 9 9
7 7 7 8 8 8 9 9 9

 show 1 4 scale Logos

Page 7 of 16

Task 4 – A Convoluted Task

Blurring is one specific example of a general family of operations which can be implemented in terms of

convolutions. Each pixel in the result is computed as a weighted sum of the original pixel and the other pixels in its

neighborhood. The precise weighting is specified in a convolution matrix, such as the following:

 ⎕←C←3 3⍴¯2 ¯1 0 ¯1 1 1 0 1 2 ⍝ "emboss" convolution matrix
¯2 ¯1 0
¯1 1 1
 0 1 2

This convolution matrix, when applied to a bitmap, will have an ”embossing” effect. More on this later...

If C is an M x N convolution matrix and P is a two-dimensional matrix, the result R has the same shape as P and is

formed according to the formula:

 ∑∑

In layman’s terms, for a 3 x 3 convolution matrix, each pixel of the result is calculated by taking the sum of the

products of the convolution matrix and the corresponding pixel in the original image and its 8 surrounding pixels.

For instance, to compute the ”convolved” value for P[3;2] (highlighted in cyan) below, and using convolution

matrix C from above.

 ⎕←P←5 5⍴42 123 67 9 54 23 61 2 19 65 20 255 78 13 11 169 24 7 2 8 0 101 14 99 3
42 123 67 9 54
23 61 2 19 65
20 255 78 13 11
169 24 7 2 8
0 101 14 99 3

R[3;2] will have the value calculated by taking the cells of shape M x N surrounding the cell in question, P[3;2],

those multiplying those cells by the convolution matrix, and summing the resulting products.

∑

For computing values along the edges of R, P should be considered to "wrap around". The left neighbor of the

top-left corner is the top-right corner, the top neighbor of the top-left corner is the bottom-left corner, and the

top-left neighbor of the top-left corner is the bottom-right corner, and so on.

Page 8 of 16

When the sum of the values in a convolution matrix is greater than 1, it has a brightening effect on the colors of

the image. So with a matrix where the values add up to 8, the resulting image is going to be roughly 8 times

brighter than the original image. To compensate for this, your code should normalize the convolution matrix by

dividing it by the sum of its values or 1 if the sum is less than or equal to 0.

Subtask 4a – Gray Convolution

For image processing, values that fall outside the valid range need to be adjusted. Values produced by toGray,

have a range of 0 to 1. So, any value in the result which is less than 0 should be set to 0. Similarly, any value

greater than 1 should be set to 1. Write a function convolve which takes two arguments where the left

argument is an M x N convolution matrix (where M and N are odd positive integers) and the right argument is a

two-dimensional matrix of grayscale values between 0 and 1. convolve will return a new matrix of grayscale

values between 0 and 1 which are the result of the convolution.

Example:

 ⎕←P←toGray 5 5↑6 5↓Logos ⍝ grab an "interesting" part of Logos
1 1 1 1 1
0.4522875817 0.4993464052 0.4784313725 0.4575163399 0.5045751634
0.5267973856 0.9385620915 0.968627451 0.9529411765 0.9869281046
0.4522875817 0.9869281046 0.9960784314 0.9934640523 0.9934640523
0.4718954248 0.9843137255 0.9633986928 0.9947712418 0.9895424837

 C convolve P ⍝ using C, the "emboss" convolution matrix from above
0 0.5281045752 0 0 0
0 0.4013071895 0.3111111111 0.4104575163 0
1 1 1 1 1
0.385620915 1 1 1 0
1 1 1 1 0.4862745098

 Show toRGB C convolve Logos ⍝ embossed gray-scale logos

Subtask 4b – Color My World

Your next task is, you guessed it, to apply convolution to full color images. The technique is similar to Subtask 4a,

except that you will apply the convolution to each of the red, green, and blue components of a pixel. Write a

function, convolveRGB which takes a convolution matrix as its left argument and a matrix of RGB values and

returns a matrix of new RGB values which are the result of the convolution.

Page 9 of 16

Example:

 ⎕←C←3 3⍴0 1 0 1 ¯4 1 ⍝ "edge detect" convolution matrix
0 1 0
1 ¯4 1
0 1 0

 Show C convolveRGB Logos

Task 5 – Take a Wild Gauss

 A popular type of blur is called the Gaussian blur. It is performed by using a convolution matrix generated by a

Gaussian function. Gaussian matrices depend on a value, , that determines how strong the blur is. In theory,

each pixel in the resulting image depends on every pixel in the original image, but in practice the effect from

distant neighbors is too small to be important, so you decide to make your Gaussian matrices of size:

⌈ ⌉ where ⌈ ⌉ is the ceiling of .

The formula for each cell of the Gaussian matrix is:

)

)

The value in the numerator of the power of is simply the square of the distance from the center of the matrix to

the cell i,j.

Example:

 5 ⍕ gaussianMat 1
 0.00002 0.00024 0.00107 0.00177 0.00107 0.00024 0.00002
 0.00024 0.00292 0.01306 0.02154 0.01306 0.00292 0.00024
 0.00107 0.01306 0.05855 0.09653 0.05855 0.01306 0.00107
 0.00177 0.02154 0.09653 0.15915 0.09653 0.02154 0.00177
 0.00107 0.01306 0.05855 0.09653 0.05855 0.01306 0.00107
 0.00024 0.00292 0.01306 0.02154 0.01306 0.00292 0.00024
 0.00002 0.00024 0.00107 0.00177 0.00107 0.00024 0.00002

 show (gaussianMat 1) convolveRGB Logos ⍝ Gaussian blur

Page 10 of 16

Time For a Little Fun…

This section has nothing to do with the contest, but since we’re dealing with graphics, we thought it might be

interesting to show a few more examples.

First some simple APL array manipulations...

show ⍉Logos ⍝ transpose

show ⌽Logos ⍝ vertical axis

show ⊖Logos ⍝ horizontal axis

show (-⍳1↑⍴Logos)⌽Logos ⍝ skew

show 256⊥⊖256 256 256⊤Logos ⍝ RGB swap

Now for a few more convolutions...
Sharpen
show (3 3⍴0 ¯1 0 ¯1 5 ¯1) convolveRGB Logos

Blur to the 50th power
show (3 3⍴1) (convolveRGB⍣50) Logos

Use the power operator to apply a Gaussian blur twice
show (gaussianMat 1) (convolveRGB⍣2) Logos

Gaussian blur to the 50th power
show (gaussianMat 1) (convolveRGB⍣50) Logos

We now return you to your regularly scheduled contest...

Page 11 of 16

Problem 4 –I Must Have Gained Weight Because My Genes are Binding
Background

You have been hired by a team of biologists to help them look for places where transcription factors bind in a DNA

sequence. Transcription factors are proteins which recognize specific sequences of DNA and bind there in order to

regulate which genes in a cell are turned on or off. DNA, in reality a sequence of molecules called nucleotides, is

modeled computationally as a string of As, Cs, Gs, and Ts. Each factor binds to a family of similar sequences. For

example, the factor called Su(H) is known to bind to the following sequences1:

TCGTGAGAAACGAGAC

ATGTGAGAAACCGAGT

GCGTGGGAACCGAGCT

TCGTGGGAACCCCGGA

GTGTGAGAAACTTACT

CTGTGGGAACTGGTAG

GTGTGGGAAACTACAA

CTGTGGGAACATTGCT

CTGTGGGAACGGAAAG

TCGTGGGAAACACTTT

They are all similar, but none of these examples are exactly alike. In the examples below, the variable

#.Problem4.Train will refer to this 10 x 16 matrix.

Task 1 – Freq Out!

A standard representation of the sequences a transcription factor is known to bind to is a frequency matrix. A

frequency matrix has 4 rows, one for each type of nucleotide (A, C, G, T), and one column for each character of

the pattern to recognize. In the example above, the frequency matrix has 16 columns. The number in the ith row

and the jth column is equal to the number of examples for which the jth column was equal to the ith nucleotide.

The frequency matrix for the example sequences above is:

1 0 0 0 0 3 0 10 10 5 1 1 4 3 4 2
3 4 0 0 0 0 0 0 0 5 7 2 2 1 3 1
3 0 10 0 10 7 10 0 0 0 1 4 2 4 2 2
3 6 0 10 0 0 0 0 0 0 1 3 2 2 1 5
Notice that the sum of the numbers in each column is 10, the number of examples.

Write a function freqMat which, given a M x N matrix of As, Cs, Ts, and Gs, returns a 4 x N frequency matrix.

Task 2 – A Weighty Position

To use a frequency matrix to look for sequences similar (but not necessarily identical) to the examples, it is first

converted to a position weight matrix (PWM). Write a function makePWM which takes a 4 x N frequency matrix F

and returns a 4 x N position weight matrix M generated by the following formula:

1 The binding sequence data was taken from the JASPAR database: Bryne JC, Valen E, Tang MH, Marstrand T, Winther O, da Piedade I, Krogh A, Lenhard B,

Sandelin A. JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update.

Page 12 of 16

∑

)

This essentially adds 1 to each element of the frequency matrix, then normalizes each column so each column

sums to 1, and finally takes the logarithm of each.

Example:

 1⍕makePWM freqMat Train
 ¯1.9 ¯2.6 ¯2.6 ¯2.6 ¯2.6 ¯1.3 ¯2.6 ¯0.2 ¯0.2 ¯0.8 ¯1.9 ¯1.9 ¯1.0 ¯1.3 ¯1.0 ¯1.5
 ¯1.3 ¯1.0 ¯2.6 ¯2.6 ¯2.6 ¯2.6 ¯2.6 ¯2.6 ¯2.6 ¯0.8 ¯0.6 ¯1.5 ¯1.5 ¯1.9 ¯1.3 ¯1.9
 ¯1.3 ¯2.6 ¯0.2 ¯2.6 ¯0.2 ¯0.6 ¯0.2 ¯2.6 ¯2.6 ¯2.6 ¯1.9 ¯1.0 ¯1.5 ¯1.0 ¯1.5 ¯1.5
 ¯1.3 ¯0.7 ¯2.6 ¯0.2 ¯2.6 ¯2.6 ¯2.6 ¯2.6 ¯2.6 ¯2.6 ¯1.9 ¯1.3 ¯1.5 ¯1.5 ¯1.9 ¯0.8

These values were rounded to one decimal place for display only; your function should not round its results.

Task 3 – Scoring Sequences

To score a sequence using a PWM, you sum the values for each letter according to the columns they are in. The

formula for a PWM M and a sequence S is:

 ∑

Write a function score which takes a left argument of a 4 x N PWM and a right argument of a string of As, Cs, Ts,

and Gs. If the string is of length L, it should return a vector of length L - N + 1. The ith element of this vector must

be the score of the substring of length N starting at position i in the string.

Example:

 1⍕(makePWM freqMat train) score 'CCATCGTGGGAAACACTTTCGAA'
¯28.8 ¯27.2 ¯24.3 ¯13.5 ¯24.4 ¯20.4 ¯26.8 ¯27.2

Again, these values were rounded to one decimal place for display only; your function should not round its results.

Task 4 – Top It Off

Write a function top5 which takes two arguments like score, a 4 x N PWM and a string. It should return a matrix

of size 5 x N which contains the 5 highest scoring subsequences of the string, in order from highest to lowest

score. You may assume it will only be passed strings of length N+4 or higher

Example:

 (makePWM freqMat train) top5 'CCATCGTGGGAAACACTTTCGAA'

TCGTGGGAAACACTTT

GTGGGAAACACTTTCG

ATCGTGGGAAACACTT

CGTGGGAAACACTTTC

TGGGAAACACTTTCGA

Page 13 of 16

Problem 5 – Go Find It Yourself
Background

To accelerate your learning of APL, you decide to make your own custom search engine for articles published in

Vector, the journal of the British APL Association. For simplicity's sake, you decide to start off by only searching

article titles. A vector of titles is found in the variable #.Problem5.Titles.

Task 1 – A Token Effort

Write a function tokenize which takes as its only argument a string and returns a list of the tokens present in

that string, converted to lowercase. A token is a sequence of letters and numbers. Punctuation is ignored.

Examples:

 +t←tokenize 'APL and J (5): Operators - Inner Product, Each, Commute, Compose'
apl and j 5 operators inner product each commute compose
 ⍴t
10
]display2 5↑t
┌→────────────────────────────────┐
│ ┌→──┐ ┌→──┐ ┌→┐ ┌→┐ ┌→────────┐ │
│ │apl│ │and│ │j│ │5│ │operators│ │
│ └───┘ └───┘ └─┘ └─┘ └─────────┘ │
└∊────────────────────────────────┘

]display tokenize 'GDDM / AP126 on APL.68000'
┌→──────────────────────────────────┐
│ ┌→───┐ ┌→────┐ ┌→─┐ ┌→──┐ ┌→────┐ │
│ │gddm│ │ap126│ │on│ │apl│ │68000│ │
│ └────┘ └─────┘ └──┘ └───┘ └─────┘ │
└∊──────────────────────────────────┘

Task 2 – It’s in the Dictionary

Write a function makeDict which takes as its only argument a list of titles (a vector of character vectors) and

returns a list of the distinct tokens present in any of the titles. We’ll call this list a dictionary.

 Example:

 3 5⍴ 15↑ makeDict 'Appropriate Use of APL in AI (1988)' 'Why GKS is Unsuitable
...' 'APL Experiences and Visual Basic for Windows'
appropriate use of apl in
ai 1988 why gks is
unsuitable experiences and visual basic

Note that ”APL” is present in two of the titles but is present only once in the result. The order of the words in the

result is not important.

2]display is a user command which displays the structure of the result of an APL expression

Page 14 of 16

Task 3 – Count ’Em Up

Write a function dictCount which takes a dictionary left argument and a string right argument. The result

should be a vector of the same length as the dictionary, but the value of each element is the number of times the

corresponding word in the dictionary appears in the given string.

Example:

 ('and' 'apl' 'be' 'experiences' 'not' 'or' 'the' 'to') dictCount 'A to Be or
not A to Be?'
0 0 2 0 1 1 0 2

The result indicates that 'be' appears twice, 'not' appears once, 'or' appears once, and 'to' appears twice. None of

the other words in the dictionary are found in the string, so the values for their positions are 0. Words in the

string that are not found in the dictionary are not involved in the result.

Task 4 – What’s Your Cosine?

One way of judging the similarity of two vectors of this model is called the cosine similarity. This measure treats

each list as a vector in a multidimensional space and finds the cosine of the angle between the vectors. If the

vectors are equal, the angle is 0 so the cosine of the angle is 1. If the vectors are orthogonal, sharing no words in

common, then the angle is 90 degrees, yielding a cosine of 0.

The cosine of the angle is found by taking the dot product of the two vectors and then dividing by the magnitude

of each. The magnitude of a vector is the square root of the sum of the square of each of its elements. That is:

‖ ‖‖ ‖

∑

√∑

 √∑

Write a function cosine which takes two equal-length vectors as its two arguments and returns the cosine

similarity between the two vectors.

Examples:

 0 1 cosine 0 1
1
 1 1 cosine 0 1
0.7071067812
 1 0 cosine 0 1
0
 1 2 3 cosine 4 5 6
0.9746318462

Task 5 – Seek and Ye Shall Find

You’re now going to use cosine to compute the relevance of each article title to a query in order to implement

your search engine. Write a function seek which takes a left argument which is the list of titles to search and the

right argument is a query string. seek should use the titles to create a dictionary, and then use this dictionary to

convert all of the titles and the query into vectors. It should then return up to the top 10 titles in terms of their

Page 15 of 16

cosine similarity to the query. It should only return titles whose similarity score is above 0. If none of the words in

the query are found in the dictionary, seek should return an empty result.

Examples:

 ⍪Titles search 'suduko' ⍝ misspelled query results in no hits

 ⍪Titles search 'sudoku'
 Sudoku with Dyalog APL
 A Sudoku Solver in J

 ⍪Titles search 'Error Trapping'
 Error Trapping Tutorial for APL.68000
 Error Trapping Tutorial for APL*PLUS
 Error Trapping Tutorial for IPSA APL
 Error Trapping Tutorial in Dyalog APL
 Tutorial on Error Trapping in APL2/PC
 Letter: Chaos - Computer Error not to Blame

Page 16 of 16

Revision Summary
16 May 2011

The original version of the problem descriptions was found to have two errors in the description of Problem 3.

 The example output convolve for Subtask 4a was incorrect and has been corrected.

 The Gaussian matrix formula in Task 5 had a misprint and has been corrected.

