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Overview 

The Phase II problems are divided into three sets, one for each of the three categories 

(Cryptography, Physics, and Neural Networks). Each set comprises one or more problems consisting 

of one or more tasks. 

 

To be considered for the grand prize, you must solve all the problems and tasks in any single 

category. You are encouraged to complete as many categories as possible. The judging committee 

will consider the level of effort put forth as one of the criteria for prize selection. For instance, if two 

submissions for a category are of comparable quality, but one of the submissions also includes a 

submission for a second category, the judging committee may take that into consideration in a 

tie-break situation. In short, your ranking in the competition can never be hurt by completing more 

than one problem set. 

 

Judging Guidelines: 

• Solutions which appropriately use an array-oriented approach will be judged higher. 

Translation: Not all problems benefit from array-oriented thinking, but those that do should 

be solved using an array-oriented approach. 

• Comments should be used to document the approach you take and any complex 

statements. We look for clarity of your understanding of the problem and its solution. But it 

is not necessary to comment every statement nor write a novella-sized description.  

 

Thank you for participating! 

Good Luck and Happy Problem Solving! 

 

Note: 

Some of the examples are displayed using the user command setting   ]boxing on   to more 

clearly depict the structure of the displayed data. 

      ('Dyalog' 'APL')(4 4⍴⍳16) 5 
  Dyalog  APL    1  2  3  4  5 
                 5  6  7  8    
                 9 10 11 12    
                13 14 15 16    
 
      ]boxing on 
Was OFF 

      ('Dyalog' 'APL')(4 4⍴⍳16) 5 
┌────────────┬───────────┬─┐ 
│┌──────┬───┐│ 1  2  3  4│5│ 
││Dyalog│APL││ 5  6  7  8│ │ 
│└──────┴───┘│ 9 10 11 12│ │ 
│            │13 14 15 16│ │ 
└────────────┴───────────┴─┘ 
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Description of the Contest2018 Template Files 

Two template files are available for download from the contest website. Which file you use depends 

on how you choose to implement your problem solutions. 

 

If you use Dyalog APL, you should use the template workspace Contest2018.DWS 

The Contest2018 workspace contains: 

• Three namespaces, one for each of the problem categories. Each namespace contains: 

o stubs for all of the functions described in the problem descriptions. The function 

stubs are implemented as traditional APL functions (tradfns) but any type of function 

(tradfn, dfn, or tacit function) is acceptable. 

Any sub-functions that you develop as a part of your solution should be co-located in the 

category namespace.  

The namespaces are: 

o #.crypto – for the cryptography problem set 

o #.neural – for the neural networks problem set 

o #.physics – for the physics problem set  

 

• #.SubmitMe – a function used to package your solution for submission. 

 

Make sure you save your work using the )SAVE system command! 

Once you have developed and are ready to submit your solutions, run the #.SubmitMe function, 

enter the requested information and click the Save button. #.SubmitMe will create a file called 

Contest2018.dyalog which will contain any code or data you placed in the #.crypto, #.neural, 

and #.physics namespaces.  

 

If you use some other APL system, you can use the template script file Contest2018.dyalog 

This file contains the correct structure for submission. You can populate it with your code, but do not 

change the namespace structure. Once you have developed your solution, edit the variable 

definitions as indicated at the top of the file and upload the file using the contest website. If you use 

some other APL system to develop your application, it will still need to execute under Dyalog APL, 

so your solution can only use APL features that are common between your APL system and Dyalog. 

 

Submitting your entry 

To submit your entry, upload the completed Contest2018.dyalog file using the competition website. 

Be sure to examine the file to verify your work is included in it. You should submit one file only even 

if you complete more than one problem category – each category's solutions should be in their 

respective namespaces. 
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Cryptography Problem Set 
 

The Cryptography Problem Set comprises 3 problems consisting of 4, 3, and 3 tasks respectively. 

To be considered for the grand prize in this category, you must complete all 10 tasks. 

 

Problem 1 – Crypto Basics 
 

Cryptography is deeply rooted in number theory. Factors, primes and understanding of 

combinatorics are often used in making sure messages can be stored and sent securely. 

 

Task 1 - Greatest Common Divisor 

Write a function GCD that calculates the greatest common divisor of its arguments without using 

the GCD primitive function ∨. 

 
GCD has the following syntax: 

      r ← a GCD b 

a and b  are arrays of positive integers of compatible shapes 

r  is the resultant greatest common divisor 

 

Examples: 

      725 GCD 150 
25 

      725 GCD 58 131 290 
29 1 145 

      314 15 926 GCD 471 100 463 
157 5 463 

The following function train can be used to test that your function performs the same as the APL 

primitive version. It does ∨ and GCD between all combinations of the left and right arguments and 

compares the results. 

 

      test←∘.∨≡∘.GCD 
      test⍨⍳300 ⍝ test all combinations of 1..300  
1 
      test⍨500?¯1+2*31 ⍝ test 500 random numbers from 1..2147483647 
1 
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Task 2 – Exclusive Or - XOR 

Write an XOR function without using ANY of the following APL comparison functions: 

< ≤ = ≥ > ≠ ≡ ≢ 
 
Exclusive OR is a Boolean operation with the following truth table: 

a b r 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 

The APL primitive function ≠ achieves this result for Boolean arguments. 

XOR has the following syntax: 

      r ← a XOR b 

a and b  are Boolean arrays of compatible shapes 

r  is the resultant Boolean array 

Examples: 

      1 XOR 1 
0 
      1 1 0 0 XOR 1 0 1 0 
0 1 1 0 

      ∘.XOR ⍨ 0 1  ⍝ truth table selfie 
0 1 
1 0 
 
The following function train can be used to test that your function performs the same as the APL 

primitive version. It performs ≠ and XOR between all combinations of the left and right arguments 

and compares the results. 

 

      test←∘.≠≡∘.XOR 
      test⍨0 1 ⍝ test all combinations 
1 
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Task 3 – Next Prime Number 

Write a function NextPrime that generates the next prime number after the given input 

NextPrime has the following syntax: 

 r ← NextPrime n 

n  is the lower limit in the search range for the next prime 

 For this problem n has a maximum value of 2147483646 (¯2+2*31) 
r  is the first prime number greater than n 

Examples: 

      NextPrime 4 
5 
      NextPrime 16 
17 
      NextPrime 17 
19 
      NextPrime 435 
439 
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Task 4 – Catalan Numbers 

Write a function Catalan that will output all the Catalan Numbers below the given input. 

 

There has been some interest in using Catalan numbers for cryptographic applications. The Catalan 

numbers Cn are a sequence of integers 1, 1, 2, 5, 14, 42, 132. . . that have a variety of applications 

including in combinatorics, quantum mechanics, and the theory of disordered systems. For instance, 

Cn gives the number of expressions containing n pairs of parentheses that are correctly matched; 

there are 5 expressions where 3 pairs of parentheses are correctly matched. 

((()))     ()(())     ()()()     (())()     (()()) 

 

 

The nth Catalan number is given by 

𝐶𝑛 =  
1

𝑛 + 1
(

2𝑛

𝑛
) 

 

The sequence can be described as 

𝐶0 = 1 and  𝐶𝑛+1 = ∑ 𝐶𝑖𝐶𝑛−𝑖   for

𝑛

𝑖=0

 𝑛 ≥ 0 

 
Catalan has the following syntax: 

 
 r ← Catalan n 
 

r  is a vector of Catalan Numbers in increasing order 

n  is the upper limit of the list 

 

Extra credit will be awarded for recursive solutions. 

Extra extra credit will be awarded for tail-recursive solutions. 

 

Examples: 

 
Catalan 20 

1 1 2 5 14 
Catalan 150 

1 1 2 5 14 42 132 
Catalan 10000 

1 1 2 5 14 42 132 429 1430 4862 
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Problem 2 - XOR encryption 
 

Background: 

XOR encryption is a modern encryption method that encrypts given message by applying a bitwise 

exclusive OR operation on each character using a given key. 

 

UTF-8 is a variable-width character encoding capable of encoding all valid code points in Unicode 

using one to four 8-bit bytes. The name is derived from Unicode Transformation Format – 8-bit. UTF-

8 was designed for backward compatibility with ASCII. Code points with lower numerical values, 

which tend to occur more frequently, are encoded using fewer bytes. The first 128 characters of 

Unicode correspond one-to-one with ASCII, so that valid ASCII text is also valid UTF-8-encoded 

Unicode.  

Every character is encoded in memory as a unique number and that number is stored in bits. This 

means you can perform an XOR operation on a character by doing the operation on its bit 

representation. 

The process of encryption is to create the bit representation of the message to be encrypted and 

perform a XOR operation against the bit representation of the key. For the most secure encryption, 

the bit representation of the key is the same length as the bit representation of the plain text 

message, and the key is made up of random bytes. The user would keep the encrypted message and 

the encryption key in different locations; without both keys it is extremely difficult to decrypt the 

message. Unfortunately, this method is impractical for most users, so the modified method is to use 

a password as a key. If the bit representation of the password is shorter than the bit representation 

of the message, which is likely, then the bit representation of the key is repeated cyclically until it 

matches the length of the bit representation of the message. The balance for this method is using a 

password key that is sufficiently long for security but short enough to be memorable.  
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Task 1 - Change the Base 

Write a function UTF8Bits that will convert a given string into its bit representation 

UTF8Bits has the following syntax: 

r ← UTF8Bits str 

str  is a character or string of characters 

r  is a Boolean vector containing the bit representation of the UTF-8 encoding of str. 

You can convert any character to its UTF-8 integer representation using the Dyalog system function 

⎕UCS. The first 128 Unicode code points correspond to the ASCII character set. 

      'UTF-8' ⎕UCS 'Testing 1 2 3' 
84 101 115 116 105 110 103 32 49 32 50 32 51 
 
Examples: 

      UTF8Bits 'A' 
0 1 0 0 0 0 0 1 
 
      UTF8Bits 'Dyalog APL' 
0 1 0 0 0 1 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 1 
1 1 0 1 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 
1 1 0 0 
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Task 2 - Encode text 
Write a function XOREncrypt that will take a character input and apply XOR encryption 

XOREncrypt has the following syntax: 

r ← key XOREncrypt text 

text is the text to be encrypted 

key is the passphrase used for the encrypting 

r  is the resultant encrypted text 

Using XOR and UTF8Bits, write a function that will take a text input as a right argument and a 

passphrase of any length as the left argument and return encrypted text using an XOR encryption. 

To simplify things, you may assume that key and text will always be comprised of ASCII characters 

(the first 128 Unicode code points). 

Examples: 

⎕UCS 'APL' XOREncrypt 'Dyalog' 
5 41 45 45 63 43 

 'APL' XOREncrypt 'APL' XOREncrypt 'Dyalog’ 
Dyalog 

 

  



12 
 

Task 3 - Crack the code 

Write a function CrackIt that will decrypt a secret message. 

 

Your job is to decrypt the message stored in cipher_text.txt which is included in the zip file that you 

should have downloaded for Phase 2. The catch is you don’t have the pass phrase. 

What you know: 

● The ciphertext was encrypted using XOR encryption 

● The pass key has three letters all lower case 

● The plain text was ASCII only 

● The original text made use of common English words 

 

 

CrackIt has the following syntax: 

r ← CrackIt cipher_text 

cipher_text  is the encrypted version of the message  
r    is the decrypted version of the message 

The encrypted message is in the file, cipher.txt, in the Problem Solving Competition zip file. 

If you're using Dyalog APL you can read the encrypted text into the workspace using: 
cipher_text←{(⎕NUNTIE⊢{⎕NREAD ⍵ 80 ¯1})⍵ ⎕NTIE 0}'[your_file_location]/cipher.txt' 
 
If you're using a different APL system, please refer to its documentation for how to read the 

contents of a text file into the workspace 
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Problem 3 – Big Integers 

42 
2987948729873987948793987498789749828761
8718740398729187627628763876826876287643
8638764862876387628374628376283682687642
5625321757645752765376535748769379569810
1001984398497476187638765190309820499509
8509808082021203 

A big integer,  
but not the kind we care about 

We care about integers with lots of digits 

 

RSA is one of the first public-key cryptosystems used by modern computers to encrypt and decrypt 

messages. It is an asymmetric cryptographic algorithm. Symmetric cryptography uses a single key to 

both encode and decode the message whereas asymmetric cryptography uses two different keys 

where either key can be used to encode the message and the other key is used to decode. This is 

also called public key cryptography, because one of them can be given to everyone (the other key 

must be kept private). The security of RSA encryption relies on the fact that finding the factors of a 

large integer is difficult. 

 

A user of RSA creates and then publishes the product of two large prime numbers, along with an 

auxiliary value, as their public key. The prime factors must be kept secret. Anyone can use the public 

key to encrypt a message and if the public key is large enough, only someone with knowledge of the 

prime factors can feasibly decode the message. 

 

Rather than ask you to implement RSA cryptography, we present 3 tasks to perform operations on 

big integers.  

 

For these tasks, you will use character arrays of digits to represent the integers. For example: 

 

      '8' 
      '42' 
      '9820982095098371002099820984763762767476576659398204' 
 

Negative numbers have a leading '¯' 

 

      '¯42' 
      '¯39989488959820809845087279759875987398739874579657985' 
 
Leading 0s are ignored 

 

      '000000042'  is treated the same as  '42' 

      '¯0000000000000042' is treated the same as  '¯42' 
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Task 1 – Comparison 

 

Write a function BigCompare that will compare two big integers  

BigCompare has the following syntax: 

 r ← left BigCompare right 

left and right  are character representations of the big integer arguments 
r is   ¯1 if left is less than right 

    0 if left is equal to right 

    1 if left is greater than right 

Examples: 

'1098309804985' BigCompare '2' 
1 
 
      BigCompare ⍨ '99999999999999999999999'  ⍝ ⍨ is selfie 
0 
 
      '000000042' BigCompare '293873987292' 
¯1 
 
      '¯11111111112' BigCompare '¯11111111111' 
¯1 
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Task 2 – Multiplication 

 

Write a function BigTimes that will multiply two big integers  

BigTimes has the following syntax: 

 r ← left BigTimes right 

left and right  are character representations of the big integer arguments 
r    is the big integer product of left and right 

Examples: 

      '21' BigTimes '2' 
42 
 
      BigTimes ⍨ '99999999999999999999999'  ⍝ ⍨ is selfie 
9999999999999999999999800000000000000000000001 
 
      '111222333444555666777888999' BigTimes '¯999888777666555444' 
¯111209963037098814814814813703716074111160556 
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Task 3 – Addition 

 

Write a function BigPlus that will add two big integers  

BigPlus has the following syntax: 

 r ← left BigPlus right 

left and right  are character representations of the big integer arguments 
r    is the big integer sum of left and right 

Examples: 

      '23' BigPlus '19' 
42 
 
      BigPlus ⍨ '99999999999999999999999'  ⍝ ⍨ is selfie 
199999999999999999999998 
 
      '1234567890123456789' BigPlus '¯9876543210987654321' 
¯8641975320864197532 
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Physics Problem Set 

The Physics Problem Set comprises 3 problems consisting of 3, 2, and 2 tasks respectively. To be 

considered for the grand prize in this category you must complete all 7 tasks. 

 

Problem 1 – Celestial Bodies 

 

 
 

The orbit in space of one body around another, such as a planet around the Sun, is rarely circular. In 

general, it takes the form of an ellipse, with the body sometimes closer in and sometimes further 

out. It is also important to note that the body being orbited does not necessarily have to be at the 

centre of the orbit. 

 

The closest and furthest distances to the centre of an ellipse have special significance in geometry, 

the same can be said about the closest and furthest distances form the centre of orbit in astronomy. 

The closest distance and furthest distances to the centre of an orbit are referred to as the semi-

major axis and semi-minor axis respectively. The other important set of distances with orbiting 

bodies are the points at which the orbital body is closest and furthest from the body being orbited. 

The closest distance an orbital body makes to the body it is orbiting (for example, the Sun) is 

referred to as the Perihelion distance and the furthest distance is the Aphelion distance. 

 

A vast amount of information about the movement of celestial bodies can be derived from simply 

knowing the Perihelion distance, the velocity at the point of the Perihelion and the mass of the body 

being orbited. 

 

Note: The inputs for the examples for the tasks use information from 4 NASA planetary fact sheets: 

o https://nssdc.gsfc.nasa.gov/planetary/factsheet/mercuryfact.html 

o https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html 

o https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html 

o https://nssdc.gsfc.nasa.gov/planetary/factsheet/saturnfact.html 

The results for the examples may vary slightly from some of the figures in the fact sheets. This is due 

to differences in precision of the calculations and the gravitational and mass of the Sun constants.  

  

https://nssdc.gsfc.nasa.gov/planetary/factsheet/mercuryfact.html
https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html
https://nssdc.gsfc.nasa.gov/planetary/factsheet/saturnfact.html
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Task 1 – Aphelion Velocity 

Write a function AphelionVelocity that calculates the Aphelion velocity. 

 

Let the Perihelion distance and velocity be 𝑙1 and 𝑣1 respectively. 

When solved, the following quadratic equation returns the Perihelion and Aphelion velocities. The 

Aphelion velocity is the smaller of the two roots of the equation. 

 

𝑣2
2 − 

2𝐺𝑀

𝑙1𝑣1
𝑣2 − [𝑣1

2 − 
2𝐺𝑀

𝑙1
] = 0 

 

𝐺 is Newton′s gravitational constant 𝐺 =  6.67408 × 10−11 m3𝑘𝑔−1𝑠−2  

𝑀 is the Mass of the body being orbited, in our case the Sun thus 𝑀 =  1.98855 × 1030 kg 

 

So, the problem becomes one of solving using the quadratic formula.  

For equations in the form 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, the roots of the equation are 

𝑥 =  
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
 

 

AphelionVelocity has the following syntax: 

  

 v2 ← v1 AphelionVelocity l1 
 
v1  is the velocity at the Perihelion in meters/second 

l1  is the Perihelion distance in meters 

v2 is the velocity at the Aphelion rounded to the nearest meter/second 

 

Examples: 

 

      58.98E3 AphelionVelocity 46.00E9   ⍝ Mercury  
38855 
 

30.29E3 AphelionVelocity 147.09E9 ⍝ Earth 
29287 
 

26.50E3 AphelionVelocity 206.62E9 ⍝ Mars 
21977 
 

10.18E3 AphelionVelocity 1352.55E9 ⍝ Saturn 
9098 
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Task 2 – Major-Minor 

Write a function Axis that given the Perihelion distance and velocity will return the semi-major 

and semi-minor axes of a celestial body orbiting the sun. 

 

Let the Perihelion and Aphelion distances be 𝑙1 and 𝑙2 respectively and let the velocities at the 

Perihelion and Aphelion be 𝑣1 𝑎𝑛𝑑 𝑣2 respectively. 

 

Kepler’s second law gives us a relationship between the Perihelion and Aphelion distances and 

velocities: 

𝑙1𝑣1 =  𝑙2𝑣2 
 

Thus, given 𝑙1, 𝑣1 and 𝑣2 it’s a simple matter to find the remaining value 𝑙2 (the Aphelion distance). 

The equations for the semi-major axis and semi-minor axis are described below, where 𝑎 and 𝑏 are 

the semi-major axis and semi-minor axis respectively. 

 

𝑎 =   
1

2
(𝑙1 + 𝑙2) 

𝑏 =  √𝑙1𝑙2            
 

 (a b) ← v1 Axis l1 
 
l1  is the Perihelion distance in meters 

v1  is the velocity at the Perihelion in meters/second 

a is the semi-major axis in meters 

b is the semi-minor axis in meters  

 

Examples: (note your results may not match exactly) 

 

      58.98E3 Axis 46.00E9   ⍝ Mercury  
 5.791266467E10  5.66742018E10  
 
      30.29E3 Axis 147.09E9  ⍝ Earth 
 1.496098321E11  1.495886103E11  
 
      26.50E3 Axis 206.62E9  ⍝ Mars 
 2.278793245E11  2.268854946E11  
 
      10.18E3 Axis 1352.55E9 ⍝ Saturn 
 1.432996581E12  1.430736716E12   
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Task 3 – What’s in a Year? 

Write a function OrbitalPeriod that given the Perihelion distance and velocity will return the 

orbital period of a celestial body orbing the sun. 

 

Using the functions developed in the previous tasks we can now tackle calculating the orbital periods 

for celestial bodies in the solar system. 

 

The equation for the orbital period is: 

𝑇 =  
2𝜋𝑎𝑏

𝑙1𝑣1
 

 

OrbitalPeriod has the following syntax: 

  

 T ← v1 OrbitalPeriod l1 
 
l1  is the Perihelion distance in meters 

v1  is the velocity at the Perihelion point in meters/second 
T  is the orbital period in days 

 

Examples: 

 
      58.98E3 OrbitalPeriod 46.00E9   ⍝ Mercury  
87.97565041  
 
      30.29E3 OrbitalPeriod 147.09E9  ⍝ Earth 
365.2938559  
 
      26.50E3 OrbitalPeriod 206.62E9  ⍝ Mars 
686.6881442  
 
      10.18E3 OrbitalPeriod 1352.55E9  ⍝ Saturn 
10828.53976 
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Problem 2 - Symmetry 
 

This problem was inspired by a game in the app Logic Games for Android and iOS. The game in 

question is called Galaxies and involves partitioning a grid into symmetrical sections centred around 

specific points on the grid. While solving the game itself would make an interesting application, it's 

probably more difficult than we want to tackle here. Instead, the two tasks for this problem will deal 

with detecting symmetry and building symmetric shapes. 

For this problem, we will be using character matrices to represent the grid. Each "cell" will have one 

of 

 - indicating an empty (available) cell 

 ⎕ indicating a cell in the symmetrical shape 

 * indicating an unavailable cell 

A valid shape must consist of contiguous horizontal and/or vertical cells; diagonally adjacent cells are 

not considered to be contiguous. A shape is symmetric if it matches itself when rotated 180 degrees. 

For example: 

Symmetric Not Symmetric Symmetric but invalid 
⎕⎕⎕-- 
-⎕⎕-- 
--⎕*- 
--⎕⎕- 
*-⎕⎕⎕ 

-⎕⎕-- 
*⎕⎕-- 
--⎕⎕* 
-*⎕⎕- 
----- 

⎕⎕⎕-* 
-⎕⎕-- 
--⎕-- 
-*⎕⎕⎕ 
--⎕⎕⎕ 

⎕*⎕-- 
-⎕⎕-- 
-*⎕*- 
--⎕⎕- 
--⎕-⎕ 
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Task 1 – Is It Contiguous? 
Write a function Contiguous that given a character matrix representing a grid of available, 

occupied, and unavailable cells will return a Boolean indicating whether all the occupied cells are 

contiguous (adjacent either horizontally and/or vertically). 

  

Contiguous has the following syntax: 

  

 r ← Contiguous mat 
 
mat is a character matrix as described in the problem introduction 

r  is a Boolean indicating whether all the occupied cells are contiguous 

 

Examples: 

 
      Contiguous 1 1⍴'⎕' ⍝ a single occupied cell is contiguous 
1 
 
      Contiguous 2 2⍴'-' ⍝ Zen question, is a non-shape contiguous? 
1 
 
      ⎕←mat← 5 5⍴'⎕⎕⎕*--⎕⎕---*⎕---*⎕⎕---⎕⎕⎕' 
⎕⎕⎕*- 
-⎕⎕-- 
-*⎕-- 
-*⎕⎕- 
--⎕⎕⎕ 
      Contiguous mat 
1 
 
      ⎕←mat←3 3⍴'⎕--' 
⎕-- 
⎕-- 
⎕-- 
      Contiguous mat 
1 
 
      ⎕←mat←3 3⍴'⎕---' 
⎕-- 
-⎕- 
--⎕ 
     Contiguous mat  
0 
 
     Contiguous 2 2⍴'⎕⎕-⎕' ⍝ contiguous, but not symmetric 
1 
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Task 2 – Is It Symmetric? 
Write a function Symmetric that given a character matrix representing a grid of available, 

occupied, and unavailable cells will return a Boolean indicating if the all the occupied cells 

represent a symmetric shape. 

 

Symmetric has the following syntax: 

  

 r ← Symmetric mat 
 
mat is a character matrix as described in the problem introduction 

r  is a Boolean indicating if the all the occupied cells represent a valid symmetric shape 

 

Examples: 

 
      Symmetric 1 1⍴'⎕' ⍝ a single occupied cell is symmetric 
1 
 
      Symmetric 2 2⍴'-' ⍝ Zen question, is a non-shape symmetric? 
1 
 
      ⎕←mat← 5 5⍴'⎕⎕⎕*--⎕⎕---*⎕---*⎕⎕---⎕⎕⎕' 
⎕⎕⎕*- 
-⎕⎕-- 
-*⎕-- 
-*⎕⎕- 
--⎕⎕⎕ 
      Symmetric mat 
1 
 
      ⎕←mat←3 3⍴'⎕--' 
⎕-- 
⎕-- 
⎕-- 
      Symmetric mat 
1 
 
      ⎕←mat←3 3⍴'⎕---' 
⎕-- 
-⎕- 
--⎕ 
     Symmetric mat ⍝ symmetric, not contiguous 
1 
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Task 3 – Is It Valid? 
Using Contiguous and Symmetric, write a function Valid that given a character matrix 

representing a grid of available, occupied, and unavailable cells will return a Boolean indicating if 

the all the occupied cells represent a contiguous, symmetric shape. 

 

Valid has the following syntax: 

 r ← Valid mat 
 
mat is a character matrix as described in the problem introduction 

r  is a Boolean indicating if the all the occupied cells represent a valid symmetric shape 

 

Examples: 

 
      Valid 1 1⍴'⎕' ⍝ a single occupied cell is symmetric 
1 
 
      Valid 2 2⍴'-' ⍝ Zen question, is a non-shape symmetric? 
1 
 
      ⎕←mat← 5 5⍴'⎕⎕⎕*--⎕⎕---*⎕---*⎕⎕---⎕⎕⎕' 
⎕⎕⎕*- 
-⎕⎕-- 
-*⎕-- 
-*⎕⎕- 
--⎕⎕⎕ 
      Valid mat 
1 
 
      ⎕←mat←3 3⍴'⎕--' 
⎕-- 
⎕-- 
⎕-- 
      Valid mat 
1 
 
      ⎕←mat←3 3⍴'⎕---' 
⎕-- 
-⎕- 
--⎕ 
     Valid mat ⍝ symmetric, not contiguous 
0 
 
     Valid 2 2⍴'⎕⎕-⎕' ⍝ contiguous, but not symmetric 
0 
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Problem 3 – Magnets 

 

The Ising model is a theoretical model of a magnet. The magnetisation of a magnetic material is 

made up of the combination of many small magnetic dipoles spread throughout the material. If 

these dipoles point in random directions then the overall magnetisation of the system will be close 

to zero, but if they line up so that all or most of them point in the same direction then the system 

can acquire a macroscopic magnetic moment - it becomes magnetised. The Ising model is a model of 

this process in which the individual moments are represented by dipoles or “spins” arranged on a 

grid or lattice: 

 

In this case we are using a square lattice in two dimensions, although in principle the model can be 

defined for any lattice in any number of dimensions. The spins themselves, in this simple model, are 

restricted to point in only two directions, up and down. Mathematically the spins are represented by 

variables si = ±1 on the points of the lattice, 1 for up-pointing spins and ¯1 for down-pointing spins. 

Dipoles in real magnets can typically point in any spatial direction, not just up or down, but the Ising 

model, with its restriction to just the two directions, captures a lot of the important physics while 

being significantly simpler to understand. 

The magnetic potential energy due to the interaction of two dipoles is proportional to their dot 

product, but in the Ising model this simplifies to just the product sisj for spins at position (i, j) on the 

lattice, since the spins are one-dimensional scalars, not vectors. Then the actual energy of 

interaction is −J × sisj, where J is a positive interaction constant. The minus sign ensures that the 

interactions are ferromagnetic, meaning the energy is lower when dipoles are lined up. A 

ferromagnetic interaction implies that the material will magnetise if given the chance. (In some 

materials the interaction has the opposite sign so that the dipoles prefer to be anti-aligned. Such a 

material is said to be antiferromagnetic, but we will not look at the antiferromagnetic case here.) 
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Task 1 – Ising Model 

Write a function TotalEnergy that calculates the total energy of an n×m lattice of dipoles. 

 

 

 

 

 

 

 

 

Normally it is assumed that spins interact only with those that are immediately adjacent to them on 

the lattice, which gives a total energy for the entire system equal to 

where the notation <ij> indicates a sum over pairs i, j that are adjacent on the lattice. On this square 

lattice each spin has four adjacent neighbors with which it interacts – left, right, up and down. 

To clarify, consider a a spin s with adjacent neighbors N, E, S, and W 

        N 
      W s E 
        S 
The energy at s is  𝐸 =  −𝐽 × 𝑠 × (𝑁 + 𝐸 + 𝑆 + 𝑊) 
To illustrate: 

   ↑ 
 ↑ ↑ ↑ 
   ↑ 

   ↑ 
 ↓ ↑ ↑ 
   ↑ 

   ↑ 
 ↓ ↑ ↑ 
   ↓ 

   ↓ 
 ↓ ↑ ↑ 
   ↓ 

   ↓ 
 ↓ ↑ ↓ 
   ↓ 

E = -4J E = -2J E = 0 E = 2J E = 4J 
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The total energy for the system is the sum over the entire lattice, but each unique pair of adjacent 

spins contributes only once in the sum. Thus, there is a term s1s2 if spins 1 and 2 are adjacent to one 

another, but you do not also need a term s2s1. 

For simplicity assume J is 1. 

Hint: one technique could be to use Dyalog’s Stencil operator: ⌺  

TotalEnergy has the following syntax: 

 E ← TotalEnergy lattice 

E   is the total magnetic energy 
lattice  is a matrix of 1s and -1s representing the different spins 

Examples: 

TotalEnergy 5 5 ⍴ ¯1 1 
40 

TotalEnergy 5 5 ⍴ 1 
¯40 

TotalEnergy 5 5 ⍴ ¯1 
¯40 

TotalEnergy 5 5 ⍴ ¯1 1 ¯1 1 ¯1 
0 

TotalEnergy 20 30 ⍴ ¯1 1 1 ¯1 1 
¯230 

TotalEnergy ¯1 1[?150 150⍴2] ⍝ your answer may be different 
162 
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Task 2 – Metro Styling 

Write a function Simulate that employs Metropolis-style Monte Carlo simulation of the Ising 

model. 

Another important feature of many magnetic materials is that the individual dipoles in the material 

can interact magnetically in such a way that it is energetically favourable for them to line up in the 

same direction. This means that if a dipole was attempting to flip in a direction that increased the 

overall energy of the system, then the system would work to keep the change where as if the flip 

was to decrease the overall energy the system would work to reverse the change. 

You function will simulate changes to the system by applying the procedure: 

1. Take an initial a lattice of 300×300 in as an argument with spin variables set to ±1. 

2. Then choose an interior (not on an edge) spin at random, flip it, and calculate the new 

energy after it is flipped. 

3. Then decide whether to accept the flip using the following acceptance formula: 

• if the change in energy ∆E < 0, accept the change 

• otherwise accept the change with the probability 𝑝 =  𝑒(−
∆𝐸

𝑇𝑘𝐵
)  

T is the temperature and defaults to 1 

kB is the Boltzmann constant and is also 1 

4. Run the procedure n times, where n is an input. 

5. Return the updated map 

Simulate has the following syntax: 

r ← n Simulate lat 
 
n  is the number of iterations 

lat is the starting 300×300 matrix of 1s and ¯1s  

r  is the resultant matrix (300x300 matrix of 1s and ¯1s) after n iterations.  
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Neural Network Problem Set 

The Neural Network Problem Set comprises 3 problems of increasing difficulty. Problem 1 has 2 

tasks, Problem 2 has 2 tasks and Problem 3 has 2 tasks. To be considered for the grand prize in this 

category, you must complete all 7 tasks. 

 

Problem 1 - Transfer Functions 
 

Transfer functions are used in a range of domains. They define a relationship between the input and 

the output of a system and are often used to map an infinite range of inputs to a finite range of 

outputs. They are a fundamental part of neural networks. 

 

Task 1 - Step Function 

Write a function StepFn that returns 1 if the input is greater than or equal to 0 and ¯1 

otherwise. 

 

StepFn has the following syntax: 

  

 r ← StepFn in 
 

Examples: 

 

      StepFn ¯5+⍳10 
¯1 ¯1 ¯1 ¯1 1 1 1 1 1 1 
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Task 2 - Sigmoid 

Write a Sigmoid function. 

 

The sigmoid function maps any value to a value between 0 and 1. 

 

𝑆(𝑥) =  
𝑒𝑥

𝑒𝑥 + 1
=  

1

1 +  𝑒−𝑥
 

Note the mathematical constant e (approximately 2.71828) can be found in Dyalog using the 

monadic exponential function *. 

*1 returns 2.718281828 
 

Sigmoid has the following syntax: 

 
r ← Sigmoid in 
 

Examples: 

 

      Sigmoid ¯2+⍳5 
0.2689414214 0.5 0.7310585786 0.880797078 0.9525741268 
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Problem 2 – Perceptron 

 

Task 1 - Perceptron 

Write an operator Perceptron that, given a set of weights, inputs and an activation function, 

returns an output as defined by the rule of a perceptron. 

 

A perceptron is the simplest neural network possible: a computational model of a single 

neuron. A perceptron consists of one or more inputs, a processor, and a single output. 

 
 

A perceptron follows the “feed-forward” model, meaning inputs are sent into the neuron, 

processed, and result in an output. In the diagram above, this means the network (one 

neuron) reads from left to right: inputs come in, output goes out. 

 

Mathematically, we can represent the perceptron as: 

 

 
where: 

 o is the output of the perceptron 

 i are the inputs 

 W are the weights 

 f is the activation function 
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Perceptron has the following syntax: 

 
 r ← input (fn Perceptron) weights 
 
input  is a vector of input values 

weights is a vector of weights 

fn  is an activation function 

r  is the perceptron’s output 

 
Examples: 

 
     2 3 (StepFn Perceptron) 0.2 0.4 
1 
 
     13 ¯4 (Sigmoid Perceptron) ¯3 1.2 
9.503896381E¯20 
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Task 2 - Are you in or are you out? 

Write an operator Side that will take a function representing a straight line and will output 1 or 

¯1 based upon which side of the line it is on. 

 

Neural networks are often used for pattern recognition applications, such as facial recognition and 

language translations. Even simple perceptron’s can demonstrate the basics of classification. 

 

        
 

Consider a line in two-dimensional space. Points in that space can be classified as being on either 

one side of the line or the other. Given a perceptron that take two inputs and uses a step function 

we can classify the input as either above or below the line. In the above diagram, we can see how 

each point is either below the line (-1) or above (+1). Points lying directly on the line shall be treated 

as being above (+1). 

 

However, the perceptron that simply takes in weights and inputs has its limitations. Consider the 

point (0,0). The sum of its weighted input will necessarily be 0. Given the point (0,0) can be above or 

below various lines in Cartesian space this problem needs to be dealt with. Introducing a bias input 

will circumvent this problem.  

 

A bias input is an additional input that always has the value of 1 and is also weighted. Here is our 

perceptron with the addition of the bias: 

  

 

 
    

Consider again the point (0,0). Here are our inputs: 

0 × weight for x = 0 

0 × weight for y = 0 

1 × weight for bias = weight for bias 
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The output is the sum of the above three values, 0 plus 0 plus the bias’ weight. Therefore, the bias, 

on its own, answers the question as to where (0,0) is in relation to the line. If the bias’ weight is 

positive, (0,0) is above the line; negative, it is below. It “biases” the perceptron’s understanding of 

the line’s position relative to (0,0). 

 

A perceptron has no knowledge about its inputs or what the desired output is; so for your 

perceptron to return the correct result for a given problem it is necessary for it to have the correct 

weights. One of the methods of adjusting weights is supervised learning. This process requires that 

the desired outcome is known (or easily calculatable) and the correct result is used to incrementally 

adjust the weights until the perceptron shows a sufficient level of accuracy. 

 

With this method, the network is provided with inputs for which there is a known answer. This way 

the network can find out if it has made a correct guess. If it’s incorrect, the network can learn from 

its mistake and adjust its weights. The process is as follows: 

    

1. Provide the perceptron with inputs for which there is a known answer. 

2. Let the perceptron attempt to answer. 

3. Compute the error. 

4. Adjust all the weights according to the error. 

5. Return to Step 1 and repeat. 

 

ERROR = DESIRED OUTPUT - GUESS OUTPUT 

 

In the case of using a perceptron to determine which side of a line a point lies on, the output has 

only two possible values: +1 or -1. This means there are only three possible errors. If the perceptron 

guesses the correct answer, then the guess equals the desired output and the error is 0. If the 

correct answer is -1 and we’ve guessed +1, then the error is -2. If the correct answer is +1 and we’ve 

guessed -1, then the error is +2. 

 

 

Desired Guess Error 

-1 -1 0 

-1 +1 -2 

+1 -1 +2 

+1 +1 0 

 

The error is the determining factor in how the perceptron’s weights should be adjusted. For any 

given weight, we want to calculate the change in weight (Δweight). 

new weight = weight + Δweight 

where Δweight is calculated as the error multiplied by the input. 
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Δweight = error × input 

Therefore: 

new weight = weight + error × input 

 

Side has the following syntax: 

  

 weights ← fn Side start_weights 
 

weights  are weights that will return the correct result when used in Perceptron 

with StepFn 

fn is the line-defining function  

start_weights is a three element vector each representing a starting weight in the range [-

1, 1]. Note the third is present to cater for the bias. 

 

Examples:  

 

     fn ← {⍵}        ⍝ y = x 
      fn Side ¯1+2×?3⍴0 
¯765.652021 767.4662006 2.766102422 
 
     fn ← {3+2×⍵}       ⍝ y = 2x + 3 
      fn Side ¯1+2×?3⍴0 
¯6572.054317 3196.163596 ¯3836.827018 
 
     fn ← {¯4+0.5×⍵}       ⍝ y = 0.5x - 4 
      fn Side ¯1+2×3⍴0 
¯1489 3103 8947 
 
     fn ← {0}        ⍝ y = 0 
      fn Side ¯1+2×?3⍴0 
26.39678882 161.6949529 2.119097298 
 
Note: due to the nature of the problem it is likely that your results will be different to those above. If 

the resultant weights can be used to perform the operation they were trained for with sufficient 

accuracy, your submission stands in good stead. 
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Problem 3 - XOR Net 
 

Perceptrons are limited in that they can only solve linearly separable problems, that is if a data set 

can be separated with a straight line it is linearly separable. 

  

 

 
    

The figure on the left is linearly separable while the one on the right is not. 

 

One of the simplest examples of a non-linearly separable problem is XOR, or “exclusive or.” Looking 

at the truth tables for AND and OR we can see that they are both linearly separable. 

  

 

 
    

Whereas looking at the truth table for XOR it is clear that it is not linearly separable. 

  

 

 
One perceptron is not enough to solve an XOR problem but by creating a network of perceptrons it 

becomes possible.
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The above diagram is known as a neural network, a network of many neurons. Some are input 

neurons and receive the inputs, some are part of what’s called a “hidden” layer (as they are 

connected to neither the inputs nor the outputs of the network directly), and then there are the 

output neurons, from which we read the results. 

  



38 
 

Task 1 - Feed Forward 

Write a function FeedForward that returns the output of a multi layered network using a 

Sigmoid activation function. 

 

Since we are not using a mechanism to predefine the number of layers or the number of nodes in 

each layer, the shape of the weights and inputs will determine the size of the network. This means 

that there can any number of nodes on the input, hidden layers or output layers. 

 

Note: Every layer except the output layer should have a bias. 

 

FeedForward has the following syntax: 

 
 r ← input FeedForward weights 
 

weights is a matrix of weights one for each connection across each layer 

input  is a vector of inputs 

r  the resultant value of the inputs passing through the network 

 

Examples: 

 

⍝ a network comprised of a lone perceptron with two inputs 
1 2 FeedForward (3 1⍴0.5 0.2 ¯0.1)      

0.6899744811 
      1 2 1 (Sigmoid Perceptron) 0.5 0.2 ¯0.1 
0.6899744811 
 
⍝ a 3-layer network with 2 input nodes, 3 nodes in the hidden layer 
⍝ and 1 output node 
      ¯4 2 FeedForward (3 3⍴0.5 0.2 ¯0.1) (4 1⍴0.1 ¯0.1)   
0.4863122671 
⍝ A 4-layer network: 3 input nodes, 2 hidden layers with 7 and  
⍝ 3 nodes respectively and 2 output nodes 
     3 5 ¯7 FeedForward (4 7⍴1.2) (8 3⍴¯0.1) (4 2⍴3.2)  
0.9981617589 0.9981617589 
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Task 2 - Back Propagation 

Write a function BackProp that trains a neural network to solve an XOR computation. Your 

neural network should have two input nodes, three nodes in the hidden layer and one output 

node excluding the biases. 

 

 

 
 

Training a neural network with multiple layers is where the real work comes in. It much more 

complicated than training a lone perceptron. With the single perceptron, it was easy to calculate 

how to change the weights according to the error. With a neural network there are many different 

connections, each in a different layer of the network. How does one know how much each neuron or 

connection contributed to the overall error of the network? 

 

One of the common approaches for training deep neural networks is a weight optimising algorithm 

known as backpropagation. Below is a guide to implementing a backpropagation algorithm to train 

a network to perform an XOR operation. 

 

First up we need a measure of how well the network is performing. To do this we introduce an error 

term: 

𝑒𝑟𝑟𝑜𝑟 =  𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡 

 

The aim is to now use this error and propagate it backwards through network adjusting the weights 

to get closer to the target output. This can be achieved using a process called gradient descent. The 

basic idea is to look at each weight and find the impact a small change has on the total error and 

then to use that to adjust the weights so that each weight is moved proportionally to its overall 

impact. This means that if one or two weights are close to their optimal value they will not be heavily 

affected, but the weights that are far from their optimal value will experience much larger changes. 

 

In the equations that follow, we use matrix notation to help illustrate the process.  However, we 

have not applied this rigorously – for instance, scalar values could possibly be better represented in 

your solution as 1 × 1 matrices or vectors could be 1-row or 1-column matrices.  There may be 

instances where the matrix shown is the transposition of the actual data, but as there are no 

duplicate shapes in this network, it should be obvious when this is the case and you should adjust 

accordingly in your solution.  
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Consider the following three-layer network: 

 
 

Running a feed forward algorithm, making use of a Sigmoid activation function (which you wrote in 

Problem 1, Task 2) on the sum of the inputs to the hidden layer, we can calculate the following 

values for the hidden layer.   

𝑙𝑎𝑦𝑒𝑟ℎ𝑖𝑑𝑑𝑒𝑛 = 𝑆([𝑖𝑛𝑝𝑢𝑡𝑠] ∙ [𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑖𝑛𝑝𝑢𝑡↔ℎ𝑖𝑑𝑑𝑒𝑛]) 

𝑙𝑎𝑦𝑒𝑟ℎ𝑖𝑑𝑑𝑒𝑛 = 𝑆 ([1 1] ∙ [
0.8 0.4 0.3
0.2 0.9 0.5

]) 

𝑙𝑎𝑦𝑒𝑟ℎ𝑖𝑑𝑑𝑒𝑛 = 𝑆([1.0 1.3 0.8]) 

𝑙𝑎𝑦𝑒𝑟ℎ𝑖𝑑𝑑𝑒𝑛 = [0.7310585786 0.785834983 0.6899744811] 

 

 
 

The output sum is the sum of the product of the hidden layer values and the hidden output weights. 

𝑜𝑢𝑡𝑝𝑢𝑡 = [𝑙𝑎𝑦𝑒𝑟ℎ𝑖𝑑𝑑𝑒𝑛] ∙ [𝑤𝑒𝑖𝑔ℎ𝑡𝑠ℎ𝑖𝑑𝑑𝑒𝑛↔𝑜𝑢𝑡𝑝𝑢𝑡] 

𝑜𝑢𝑡𝑝𝑢𝑡 = [0.7310585786 0.785834983 0.6899744811] ∙ [
0.3
0.5
0.9

] 

𝑜𝑢𝑡𝑝𝑢𝑡 = [1.233212098] 

 

Then applying the activation function gives the final output result: 

𝑙𝑎𝑦𝑒𝑟𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑆(𝑜𝑢𝑡𝑝𝑢𝑡) 

𝑙𝑎𝑦𝑒𝑟𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑆([1.233212098]) 

𝑙𝑎𝑦𝑒𝑟𝑜𝑢𝑡𝑝𝑢𝑡 = [0.774380272] 

 

Given our definition of error, we have 𝑒𝑟𝑟𝑜𝑟 =  −0.774380272 
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This error must now be propagated back though our network in an attempt to find the optimal 

amount by which to adjust the weights.  

 

First, we want to know if a weight is too big or too small. Once that is established we want to know 

how big an adjustment is safe to make. If big adjustments are made, there is the risk of overshooting 

the targeted value, but if too small a step is taken then it could take a long time to get to the desired 

result. To answer these two questions, let us look at the derivative of our activation function. 

 

 
 

Remember the Sigmoid function: 

𝑆(𝑥) =   
1

1 +  𝑒−𝑥
 

 

Its derivative is as follows. 

𝑆’(𝑥)  =  𝑆(𝑥)(1 –  𝑆(𝑥)) 

 

The derivative describes the slope of the curve. The slope is biggest in the middle and is a maximum 

at the point 𝑆(𝑥) = 0.5. Note that this is also the point that is furthest away from either of our 

desired results, namely 1 or 0. If we move right we get to 1 if we move left we get to 0. The 

derivative tails off to 0 to both the left and the right. It looks like the derivative will be useful with for 

determining whether it is safe to take big steps – when at the furthest point from either possible 

answer it is at a maximum meaning big steps and it gets smaller as it moves towards one of the 

answers meaning smaller steps. But we still need to know which direction to move in. 

 

For this we use the error term. Since it is signed is can indicate which way is the right direction to 

move in. Putting these ideas together we get a metric called the output delta which is the derivative 

of the output sum multiplied by the error. 

 

∆𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑆′(𝑜𝑢𝑡𝑝𝑢𝑡) × 𝑒𝑟𝑟𝑜𝑟 

∆𝑜𝑢𝑡𝑝𝑢𝑡 =  𝑆′(1.233212098) × −0.774380272 

∆𝑜𝑢𝑡𝑝𝑢𝑡 =  0.1747154663 × −0.774380272 = −0.1352962103 

 

Now we can work our way back through the network, adjusting the weights, until we reach the input 

layer. The contribution to the error from the hidden layer can be established by multiplying the 

weights in the output layer by ∆𝑜𝑢𝑡𝑝𝑢𝑡: 
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𝑒𝑟𝑟𝑜𝑟ℎ𝑖𝑑𝑑𝑒𝑛 = ∆𝑜𝑢𝑡𝑝𝑢𝑡 × [𝑤𝑒𝑖𝑔ℎ𝑡𝑠ℎ𝑖𝑑𝑑𝑒𝑛↔𝑜𝑢𝑡𝑝𝑢𝑡] 

𝑒𝑟𝑟𝑜𝑟ℎ𝑖𝑑𝑑𝑒𝑛 = −0.1352962103 × [
0.3
0.5
0.9

] =  [
−0.04058886310
−0.06764810517
−0.12176658930

] 

 

We can now find the output delta for the hidden layer. This gives an indication of how best to shift 

the first set of weights. 

 

∆𝑜𝑢𝑡𝑝𝑢𝑡ℎ𝑖𝑑𝑑𝑒𝑛 = 𝑒𝑟𝑟𝑜𝑟ℎ𝑖𝑑𝑑𝑒𝑛  × 𝑆′(𝑙𝑎𝑦𝑒𝑟ℎ𝑖𝑑𝑑𝑒𝑛) 
 

∆𝑜𝑢𝑡𝑝𝑢𝑡ℎ𝑖𝑑𝑑𝑒𝑛 =  [
−0.04058886310
−0.06764810517
−0.12176658930

] × 𝑆′ ([
0.7310585786
0.7858349830
0.6899744811

]) 

 

∆𝑜𝑢𝑡𝑝𝑢𝑡ℎ𝑖𝑑𝑑𝑒𝑛 =  [
−0.007980254842
−0.011385065320
−0.026047054160

] 

 

The next step is find the weight adjustment amounts. the process is as follows: 

For the weights between the input and hidden layers: 

 

∆𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑖𝑛𝑝𝑢𝑡↔ℎ𝑖𝑑𝑑𝑒𝑛 = [𝑖𝑛𝑝𝑢𝑡] ∙ [∆𝑜𝑢𝑡𝑝𝑢𝑡ℎ𝑖𝑑𝑑𝑒𝑛] 

∆𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑖𝑛𝑝𝑢𝑡↔ℎ𝑖𝑑𝑑𝑒𝑛 = [
1
1

] ∙ [−0.007980254842 −0.01138506532 −0.02604705416] 

∆𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑖𝑛𝑝𝑢𝑡↔ℎ𝑖𝑑𝑑𝑒𝑛 =  [
−0.007980254842 −0.01138506532 −0.02604705416
−0.007980254842 −0.01138506532 −0.02604705416

] 

 

And for the weights between the hidden and output layers: 

 

∆𝑤𝑒𝑖𝑔ℎ𝑡𝑠ℎ𝑖𝑑𝑑𝑒𝑛↔𝑜𝑢𝑡𝑝𝑢𝑡 = [𝑙𝑎𝑦𝑒𝑟ℎ𝑖𝑑𝑑𝑒𝑛] ∙ [∆𝑜𝑢𝑡𝑝𝑢𝑡] 

∆𝑤𝑒𝑖𝑔ℎ𝑡𝑠ℎ𝑖𝑑𝑑𝑒𝑛↔𝑜𝑢𝑡𝑝𝑢𝑡

= [0.7310585786 0.7858349830 0.6899744811] ∙ [−0.1352962103] 

 ∆𝑤𝑒𝑖𝑔ℎ𝑡𝑠ℎ𝑖𝑑𝑑𝑒𝑛↔𝑜𝑢𝑡𝑝𝑢𝑡 = [
−0.09890945522
−0.10632049520
−0.09335093252

] 

 

The weights can now be updated using: 

 

𝑤𝑒𝑖𝑔ℎ𝑡𝑖
+ = 𝑤𝑒𝑖𝑔ℎ𝑡𝑖 +  ∆𝑤𝑒𝑖𝑔ℎ𝑡𝑖 

 

The above process must then be repeated a sufficient number of times until the network converges 

on a solution. 

 

Using the above as a guide write a function that will take the shape of a network, a set of expected 

results and their matching inputs and return the weights required to perform the operation defined 

by the input/target set. 

• Your starting set of weights should be set random numbers between ¯1 and 1. 

• The number of iterations required to train the weights is discretionary. 
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Your submission shall be considered complete if your code satisfies the primary goal of training a 

2-3-1 layer XOR network based of the above example, but the following additional features will be 

considered favourable:  

• Your network can be used to train other Boolean operations such as AND or NAND 

• Your function can handle a variable number of nodes in the hidden layer (but always 2 input 

nodes and one output node).  

• Your function can be trained based on the complete set of inputs.   

For example your network would look like: 

 

 
 

Where your hidden layer sum would be: 

[

0 0
0 1
1 0
1 1

] ∙ [
𝜔1 𝜔2

𝜔4 𝜔5

𝜔3

𝜔6
] 
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BackProp has the following syntax: 

 
 weights ← network_shape BackProp (input target) 
 

network_shape a numeric vector describing the number of nodes in each of the layers 

weights  are the resultant weights needed for the specified network to compute XOR 

 

Examples: 

 

]boxing on 
 
⍝ a network with 3 layers,  
⍝ 2 input nodes,  
⍝ 3 hidden nodes 
⍝ 1 ⍝ output node 
 
network_shape ← 2 3 1 
input ←  (1 1)(1 0)(0 1)(0 0) 
target ← 0 1 1 0 

 
      ⎕ ← weights ← network_shape BackProp input target 
┌─────────────────────────────────────┬────────────┐ 
│ 120.4374354 1.493461405 ¯119.3929741│¯42.66514616│ 
│¯118.8198287 1.486570786  121.0097061│ 64.25818411│ 
│                                     │¯42.59829271│ 
└─────────────────────────────────────┴────────────┘ 
 
Note: Due to the nature of the problem it is likely that your results will be different to those above. 
As long as the resultant weights can be used to perform the operation they were trained for with 
sufficient accuracy, your submission stands in good stead. 
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