

APL Problem Solving Competition

Phase 2
Introduction
Phase 2 is similar to Phase 1 in that you submit solutions for each problem separately. In
contrast to Phase 1, Phase 2 solutions are likely larger and more complex, and they should
be adequately commented. You need to have submitted at least one correct Phase 1
solution before you can submit anything for Phase 2.

Each Phase 2 problem comprises one or more tasks. You must complete all of the tasks for
the problem to be considered complete and be judged by the competition committee.
You can write additional subfunctions in support of your solutions if necessary.

Each task description contains one or more examples. If applicable, the judging committee
could submit your solutions to additional testing beyond the specific example solutions.

Your solutions will be tested in the default Dyalog environment using (⎕IO ⎕ML)←1. Your
code may employ a different, localized, setting for either of these if necessary.

Submission format
You can write your solutions using any combination of tradfns or dfns. The only
requirement is that the function name and syntax must match the task description. For
example, if the task description is:

Write a function named Plus which:

takes a numeric array right argument.
takes a numeric singleton left argument.
returns a result that is the same shape as the right argument and whose values are the
sums of the left argument added to each element of the right argument.

then either of the following would be valid solutions:
∇ r←a Plus b
 r←a+b
∇

Plus←{⍺+⍵}

The functions specified in the problem descriptions must be tradfns or dfns. You are free
to use tacit definitions inside these, and as helper-functions. Any of the following would be
valid solutions:
∇ r←a Plus b
 r←a(⊣+⊢)b
∇

Plus←{⍺(⊣+⊢)⍵}

Plus←{⍺ TacitPlus ⍵}
TacitPlus←⊣+⊢

Judging Guidelines
Phase 2 will mainly be judged based on:

Did you solve the problem?
Does your solution demonstrate appropriate use of array-oriented techniques?
Solutions that use looping where an obvious array-based solution exists will be judged
lower.
Did you comment your solution? It's not necessary to write a novel, or add a comment
to every line, but comments describing non-trivial lines of code are advised. These help
the judging committee determine your level of understanding of the problem and its
solution.
Is your solution original? Your solution should be your own work and not a copy or
near-copy of an already-published solution.

Tips
Read the descriptions carefully.
Don't make any assumptions about shape, rank, datatype, or values that are not
explicitly stated in the description. For example, if an argument is stated to be a numeric
array then it can be any numeric type (Boolean, integer, floating point, complex) and of
any shape or depth.
Make sure that your functions return a result rather than just display output to the
session.
Pay attention to any additional judging criteria that may be stated in an individual
problem's description.

Be aware that the examples serve to provide basic guidance and validation for your
solutions and are not intended to be an complete exposition of all possible edge cases;
the judging committee will submit your solutions to additional test cases.
Be aware that the order that the problems are presented in does not necessarily reflect
their level of difficulty – if you find yourself stuck then you might find the next problem
more straightforward!

1: Sub-space Journey (3 tasks)
All the tasks in this problem are related to creating and detecting sub-spaces. APL's
multidimensional capabilities are well-suited to address problems of this sort.

Task 1: Write a function named runs that:

takes a non-negative integer scalar left argument n that which specifies the length of
the result.
takes a 2-column integer matrix right argument in which:

column 1 is a positive integer representing the index in the result where a run of 1s
will start.
column 2 is a non-negative integer representing the length of the run (number of
consecutive 1s) starting at the index indicated by column 1.

returns a Boolean vector of length n comprising runs of consecutive 1s as indicated by
the right argument.

Note: Any indices implied by the right argument that exceed the shape of the result
should be ignored.

Examples
 10 runs 1 2⍴3 4
0 0 1 1 1 1 0 0 0 0

 10 runs 2 2⍴3 4 8 6 ⍝ a the result must be of length n, even if a run
is specified beyond n
0 0 1 1 1 1 0 1 1 1

 15 runs 0 2⍴ 5 3 ⍝ no runs here
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 15 runs 2 2⍴3 6 5 7 ⍝ overlapping runs are permitted
0 0 1 1 1 1 1 1 1 1 1 0 0 0 0

 10 runs 1 2⍴6 0 ⍝ 0-length runs are permitted
0 0 0 0 0 0 0 0 0 0

 0 runs 2 2⍴2 3 5 6 ⍝ returns a 0-length (empty) vector

Task 2: Having written runs in Task 1, let's complicate things a bit...

Write a function named fill that:

takes a non-negative integer scalar or non-empty vector left argument size that
specifies the shape of the result. We'll also specify rank←≢size.
takes a (2×rank)-column integer matrix subspaces where the first rank columns
specify the index where a sub-space starts and the last rank columns specify the shape
of the sub-space.
For example, a row containing 2 1 3 6 4 5 describes a 6×4×5 sub-space starting at index
(2,1,3) in a 3-dimensional array.
returns an integer array of the shape specified in size, where each sub-space is filled
with the row index in subspaces for that sub-space. Positions not in any described
sub-space should be 0.

Note: Any indices implied by the right argument that exceed the shape of the result
should be ignored.

Examples

 10 fill 1 2⍴3 4
0 0 1 1 1 1 0 0 0 0

 15 fill 2 2⍴3 6 5 7 ⍝ overlapping fills are permitted
0 0 1 1 2 2 2 2 2 2 2 0 0 0 0

⍝ a terrible way to implement Phase 1's "Pyramid Scheme" problem
 ⊢spaces←5 4⍴∊2/¨(⍳5),¨(⌽¯1+2×⍳5)
1 1 9 9
2 2 7 7
3 3 5 5
4 4 3 3
5 5 1 1

 9 9 fill spaces
1 1 1 1 1 1 1 1 1
1 2 2 2 2 2 2 2 1
1 2 3 3 3 3 3 2 1
1 2 3 4 4 4 3 2 1
1 2 3 4 5 4 3 2 1
1 2 3 4 4 4 3 2 1
1 2 3 3 3 3 3 2 1
1 2 2 2 2 2 2 2 1
1 1 1 1 1 1 1 1 1

 4 4 4 fill 3 6⍴6/1 2 3
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 2 2 0
0 2 2 0
0 0 0 0

0 0 0 0
0 2 2 0
0 2 3 3
0 0 3 3

0 0 0 0
0 0 0 0
0 0 3 3
0 0 3 3

Task 3: Now let's go the other way and write a function to describe the sub-spaces in an
n-dimensional space...

Write a function subspaces with syntax:
 result ← subspaces space

This function:

takes a non-negative, non-scalar, integer array space that has the following
characteristics:

sub-spaces are defined as rectangular blocks of positive integers.
the positive integers that identify the sub-spaces start counting from 1 and are
consecutive.
the total number of sub-spaces in space is arbitrary.
sub-spaces are completely within space.
sub-spaces do not overlap.

returns an integer matrix with 2×rank columns rank is the number of dimensions in
space) where:

each row describes a sub-space.
rows are ordered by the positive integer that identifies the sub-space.
the first rank columns represent the first index of the sub-space.
the second rank columns represent the shape of the sub-space.

Examples
(annotated)

 subspaces 0 2 2 0 1 1 1 1 0 3
 5 4 ⍝ the 1s start at index 5 and have length 4
 2 2 ⍝ the 2s start at index 2 and have length 2
10 1 ⍝ the 3s start at index 10 and have length 1

 ⊢space←↑(⊢⍴⍨⊢,⊢)¨3 2 1
3 3 3
3 3 3
3 3 3

2 2 0
2 2 0
0 0 0

1 0 0
0 0 0
0 0 0
 subspaces space
3 1 1 1 1 1 ⍝ the 1s start at position 3 1 1 and span 1 plane, 1 row, and 1
column
2 1 1 1 2 2 ⍝ the 2s start at position 2 1 1 and span 1 plane, 2 rows, and 2
columns
1 1 1 1 3 3 ⍝ the 3s start at position 1 1 1 and span 1 plane, 3 rows, and 3
columns

 ⍴subspaces 5 4 3 2⍴0 ⍝ if no sub-spaces, the result should still have
the proper number of columns
0 8

 ⊢space←((3 3⍴5),(2 2⍴2)⍪1)⍪(2 2⍴4),2 3⍴3
5 5 5 2 2
5 5 5 2 2
5 5 5 1 1
4 4 3 3 3
4 4 3 3 3
 subspaces space
3 4 1 2
1 4 2 2
4 3 2 3
4 1 2 2
1 1 3 3

2: Reshaping Reshape ⍴ (2 tasks)
Task 1: Write a function named reshape that behaves like the primitive reshape function
X⍴Y except that elements in the left argument can be negative integers, which indicates
that the data is reversed along the corresponding axis. Your function reshape should:

take an integer vector or scalar left argument named dims that represents the length
and direction of each axis in the result.
take an array right argument named data
return an array of shape (|dims), which is the same as dims⍴data except that the
elements along the n axis are reversed if dim[n]<0.

Note: Your function reshape is subject to the same limits as ⍴, for example, it has a
maximum of 15 axes.

Examples
 10 reshape ⍳4
 1 2 3 4 1 2 3 4 1 2

 ¯10 reshape ⍳4
 2 1 4 3 2 1 4 3 2 1

 ¯4 4 reshape ⎕A ⍝ rows are reversed
 MNOP
 IJKL
 EFGH
 ABCD

 ¯4 ¯4 reshape ⎕A ⍝ rows and columns are reversed
 PONM
 LKJI
 HGFE
 DCBA

th

 2 ¯2 ¯3 4 reshape ⍳48 ⍝ planes and rows are reversed, hyperplanes and
columns are not
 21 22 23 24
 17 18 19 20
 13 14 15 16

 9 10 11 12
 5 6 7 8
 1 2 3 4

 45 46 47 48
 41 42 43 44
 37 38 39 40

 33 34 35 36
 29 30 31 32
 25 26 27 28

 2 ¯2 reshape'Adam' 'Brian' 'Michael' 'Morten'
 ┌──────┬───────┐
 │Brian │Adam │
 ├──────┼───────┤
 │Morten│Michael│
 └──────┴───────┘

 ⍬ reshape 5 3 1 ⍝ returns scalar 5
5

Task 2: The primitive reshape function ⍴ repeats or truncate elements of the right
argument as necessary to match the shape described by the left argument. Hence 4⍴1 2
returns 1 2 1 2.

In this task we're going to extend this behavior by writing a function named reshape2
that, in addition to doing what reshape above does, also:

allows, at most, one element of the left argument (dims) to be one of 6 "special" values
(0.5 1.5 2.5 ¯0.5 ¯1.5 ¯2.5) that affects the length of the corresponding axis
based on the other dimensions and the length of the data. These values are interpreted
as follows:
0.5 means truncate the data if it doesn't fill a complete corresponding axis.
1.5 means repeat the data, if necessary, to fill out a complete corresponding axis.
2.5 means pad the data with an appropriate prototype, if necessary, to fill out a
complete corresponding axis; similar to how the primitive function take X↑Y behaves.
The other three values (¯0.5 ¯1.5 and ¯2.5) have the same intepretation as their
positive counterparts but also reverse the elements in the corresponding dimension.

If dims is a singleton and is one of the "special" values, then reshape2 should
return the elements of the right argument as a vector (reversed if dims is negative).

Note: Your function reshape2 is subject to the same limits as ⍴, for example, it has a
maximum of 15 axes.

Your function should essentially:

1. truncate, repeat, or pad the data to make it conform to the shape derived from dims.
2. reverse, if necessary, along the approriate axes, as specified by dims.

Examples
 0.5 4 reshape2 ⍳10 ⍝ 0.5 truncates the data
1 2 3 4
5 6 7 8

 4 0.5 reshape2 ⍳10
1 2
3 4
5 6
7 8

 1.5 4 reshape2 ⍳10 ⍝ 1.5 repeats the data
1 2 3 4
5 6 7 8
9 10 1 2

 2.5 4 reshape2 ⍳10 ⍝ 2.5 pads the data
1 2 3 4
5 6 7 8
9 10 0 0

 ¯4 ¯2.5 reshape2 13↑⎕A ⍝ 4 rows with padding and the rows and columns
reversed
 M
LKJI
HGFE
DCBA

 ¯3 ¯2.5 reshape2 'brian' 'adam' 'morten' 'michael'
┌───────┬──────┐
│ │ │
├───────┼──────┤
│michael│morten│
├───────┼──────┤
│adam │brian │
└───────┴──────┘

 ⍴⎕←⍬ reshape2 'brian' 'adam' 'morten' 'micheal' ⍝ result is a scalar
┌─────┐
│brian│
└─────┘

 2.5 3 4 reshape2 ⍳21 ⍝ 3 axes
 1 2 3 4
 5 6 7 8
 9 10 11 12

13 14 15 16
17 18 19 20
21 0 0 0

 2 2.5 3 4 reshape2 ⍳26 ⍝ 4 axes
1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

25 26 0 0
 0 0 0 0
 0 0 0 0

 0 0 0 0
 0 0 0 0
 0 0 0 0

 ¯2 2.5 3 ¯4 reshape2 ⍳26 ⍝ 4 axes with reversal
 0 0 26 25
 0 0 0 0
 0 0 0 0

 0 0 0 0
 0 0 0 0
 0 0 0 0

 4 3 2 1
 8 7 6 5
12 11 10 9

16 15 14 13
20 19 18 17
24 23 22 21

3: Meetings of the Minds (3 tasks)
Each year, Dyalog Ltd sponsors a user meeting where Dyalog staff and users have an
opportunity to present topics of interest and interact with one another. Due to the impact
of COVID-19, the meetings for 2020 and 2021 were conducted virtually using Zoom.
People registered ahead of time and could then sign-on and attend, virtually, any or all
sessions. There were two partial days of sessions in each year.

After the conclusion of the user meeting, Zoom sent Dyalog Ltd a CSV file containing
information including when each attendee joined or left the meeting. The tasks in this
problem involve analyzing this information. There are two files that you will need for this
problem:

Attendees.csv contains attendee information for all four days of the 2020 and 2021
Dyalog user meetings. This is a sub-set of the actual data sent to Dyalog Ltd by Zoom.
All personally-identifiable information has been removed. The attendee names found in
the files are ficticious and were randomly generated – no association with any real
person is intended or should be inferred. This file has 4 columns:

Attendee – the ficticious attendee name
Join Time – a character vector representing the time the attendee joined the meeting
Leave Time – a character vector representing the time the attendee left the meeting
Date – a character vector representing the date for the entry

Note: Some rows have join and leave times of '--' meaning the attendee registered for
the user meeting but did not attend any sessions that day. When we combined the data
for all four days into a single file, we added the Date column to indicate which date an
attendee did not attend.

Schedule.csv contains the user meeting schedules for all four days. This file has 4
columns:

Session – the session identifier
Title – the session title
Start Time – a character vector representing the start time of the session
End Time – a character vector representing the end time of the session

You should use the ⎕CSV system function to import the CSV data into the workspace as
follows:
 attendees←⊃⎕CSV 'your-path-here/Attendees.csv' '' ⍬ 1
 schedule←⊃⎕CSV 'your-path-here/Schedule.csv' '' ⍬ 1

Notes:

https://contest.dyalog.com/Downloads/Attendees.csv
https://contest.dyalog.com/Downloads/Schedule.csv

For the purpose of describing the tasks for this problem, we will be using matrices
named attendees and schedule as defined above.
You should replace your-path-here above with the path to the folder into which you
downloaded the CSV files.
When properly read, attendees and schedule should have 1446 and 48 rows
respectively.
The Date-time system function ⎕DT could be helpful for this problem.

Task 1: Write a dyadic function Attended with syntax:
 result←attendees Attended schedule

where Attended:

takes the matrix attendees (or a sub-set of its rows) as its left argument.
takes the matrix schedule as its right argument.
returns a 435×48 Boolean matrix in which:

the rows represent the list of unique attendees sorted alphabetically
(uattendees).
(Hint: Aaden Webster and Zoe Bright are the first and last attendees
alphabetically).
the columns represent each session in schedule.
a 1 in position [i;j] indicates that uattendees[i] attended schedule[j;].
An attendee is considered to have attended a session if they were present for at
least half of the time (in minutes) that the session was being held. We don't count
the "leave time" minute or the "session end" minute. For example: for a session
that runs from 14:00-14:30, if an attendee joins at 14:00 and leaves at 14:14, they
would be considered to have not attended that session whereas if they left at
14:15, they would be considered to have attended.

Examples:

http://help.dyalog.com/latest/#Language/System%20Functions/dt.htm

 who←'Zaria Matthews' 'Kathryn Stafford' 'Marlene Lin' 'Kayleigh
Rodgers'

 who[⍋who],(attendees⌿⍨attendees[;1]∊who) Attended schedule ⍝
remember, the result of Attended is sorted by attendee name
 Kathryn Stafford 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0
0
 Kayleigh Rodgers 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
 Marlene Lin 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0
 Zaria Matthews 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

 attendees⌿⍨attendees[;1]∊who[1]
Zaria Matthews 11/8/2021 16:12 11/8/2021 16:25 11/8/2021
Zaria Matthews 11/9/2021 14:04 11/9/2021 14:34 11/9/2021

To help you validate your solution, we've included two files attendeeTotals.json and
sessionTotals.json containing the row and column totals of
attendees Attended schedule. To use them to validate your work:
 map←attendees Attended schedule
 (⎕JSON ⊃⎕NGET 'your-path-here/sessionTotals.json')≡+⌿map
1
 (⎕JSON ⊃⎕NGET 'your-path-here/attendeeTotals.json')≡+/map
1

Task 2: Write a dyadic function ShowedUp with syntax:
 result←attendees ShowedUp schedule

where ShowedUp:

takes the matrix attendees as its left argument.
takes the matrix schedule as its right argument.
returns a 2×5 integer matrix where the columns contain:
[;1] – the year of the user meeting
[;2] – the number of people who registered for that year
[;3] – the number of people who attended the first day of that year
[;4] – the number of people who attended the second day of that year
[;5] – the number of people who registered but did not attend either day that
year

uses the same criteria as Attended for determining attendance.
Using the '--' entries in attendees is not sufficient to determine whether a user
attended on a given day. This is demonstrated by Zaria Matthews' entry in the
previous example – although she did join on 8 November 2021, the time was not
sufficient to count as having attended a session.

https://contest.dyalog.com/Downloads/attendeeTotals.json
https://contest.dyalog.com/Downloads/sessionTotals.json

Example:
As there's only one correct answer, we'll provide it here for you to validate your work.
 attendees ShowedUp schedule
 2020 298 205 184 78
 2021 238 166 149 54

Task 3: Write a dyadic function Popular with syntax:
 result←map Popular schedule

where Popular:

takes the matrix map (the result of Task 1) as its left argument.
takes the matrix schedule as its right argument.
returns a 2-element vector (one element for each year) where each element is a 2-
column matrix in which:
[;1] is the number of attendees for a session.
[;2] is the session title.
the matrix should be sorted by descending popularity each day.
the matrix should not include any sessions that are break periods.

Example:
As there's only one correct answer, we'll provide it here for you to validate your work.

 result←map Popular schedule
 ⍴result
 2
 ⍴¨result
 16 2 19 2

 ⍪' '⍪¨(attendees Attended schedule) Popular schedule

 178 The Road Ahead
 169 Multi-line Input and Scripting
 164 The .NET Core Bridge
 160 Welcome to Dyalog '20
 160 Dyalog's Docker Containers
 159 Array Notation RC1
 157 Time Travel Debugging and Statistical Distributions
 151 Reworking Mastering Dyalog APL
 146 How I Won the APL Problem Solving Competition
 143 How I Won the APL Problem Solving Competition - Introduction
 134 Rational Arithmetic
 128 Building Applications using qWC (⎕WC) on the Web
 127 Tracing Hanneke Vrome Numerically
 114 APL Online!
 113 Closing session
 76 Open Discussion

 131 Scripting in Dyalog v18.2
 129 The Road Ahead
 122 APL in the Driver's Seat
 120 Here's The Plan: Learn APL, and Write a Book About It
 118 Welcome to Dyalog '21
 115 Dado (Dyalog APL Development Operations)
 112 Support for Statistical Distributions in Dyalog v18.2
 112 Link v3.0
 109 The 2021 APL Problem Solving Competition - Introduction
 108 Extending the Domain of the Probability Operator in TamStat
 107 The 2021 APL Problem Solving Competition - Runner-Up's Presentation
 102 Python + APL = Py'n'APL
 101 Packaging Dyalog Tools
 96 Highlights of Dyalog v18.2
 95 ⎕JSON Table Support
 84 APL Media Update 2021
 73 The Array Cast (live podcast recording)
 71 Closing session and open discussion
 26 Open Discussion

4: Instant-Runoff Voting (2 tasks)
Instant-runoff voting (IRV) is a type of ranked voting that can be used when there are
more than two candidates running for a single seat. In this system, voters rank the
candidates in order of preference. The votes for each candidate are tallied and if a
candidate has a majority, they win. If no candidate receives more than half of the votes,
then the candidate(s) who received the fewest votes are dropped from consideration. The
voters who selected the defeated candidates then have their votes added to the totals of
their next choice. This process continues until a candidate has more than half of the votes.
Ballots on which all of a voter's ranked candidates are eliminated become inactive. IRV is
used in a number of countries, provinces, states and municipalities.

Task 1: Write a dyadic function named Ballot that generates a sample ballot by
randomly assigning candidate rankings and has syntax:
 r←candidates Ballot voters

where Ballot:

takes a positive integer right argument representing the total number of voters.
takes a non-zero integer left argument representing the number of candidates where:

the number of candidates is |candidates.
if candidates>0, each ballot entry must rank all candidates.
if candidates<0, at least one candidate must be ranked.

returns a 2-column matrix in which:
[;2] contains unique vectors of length |candidates, where the i element is the
ranking for candidate i.
[;1] is the number of votes matching that ranking combination.

NOTE: Every valid result should have a non-zero probability of appearing.

Examples:
Let's create sample ballots for 150 voters and 3 candidates – Bob, Mary, and Larry. Your
results will likely be different because they are random.

th

 b←3 Ballot 150 ⍝ generate 150 voter rankings for 3 candidates
 b
┌──┬─────┐
│22│3 1 2│
├──┼─────┤
│25│2 1 3│
├──┼─────┤
│31│3 2 1│
├──┼─────┤
│19│1 3 2│
├──┼─────┤
│33│2 3 1│
├──┼─────┤
│20│1 2 3│
└──┴─────┘
 ('#',b[;1]),'Bob' 'Mary' 'Larry' ⍪↑b[;2]
 # Bob Mary Larry
22 3 1 2 ⍝ 22 people ranked Mary first, Larry second, and Bob
third
25 2 1 3 ⍝ 25 people ranked Mary first, Bob second, and Larry
third
31 3 2 1 ⍝ 31 people ranked Larry first, Mary second, and Bob
third
19 1 3 2 ⍝ 19 people ranked Bob first, Larry second, and Mary
third
33 2 3 1 ⍝ 33 people ranked Larry first, Bob second, and Mary
third
20 1 2 3 ⍝ 20 people ranked Bob first, Mary second, Larry third

 b2←¯3 Ballot 150
 ('#',b2[;1]),'Bob' 'Mary' 'Larry' ⍪↑b2[;2]
 # Bob Mary Larry
10 1 2 3 ⍝ 10 people ranked Bob first, Mary second, Lary third
11 2 1 0 ⍝ 11 people ranked Mary first, Bob second and no one
third
10 2 1 3 ⍝ you get the idea...
 9 1 3 2
13 0 1 2
14 0 0 1
12 3 1 2
16 1 0 0
21 0 1 0
 6 1 2 0
 6 2 0 1
 8 3 2 1
 6 0 2 1
 4 1 0 2
 4 2 3 1

 1 Ballot 150 ⍝ uncontested election!
150 1

Task 2: Write a monadic function named IRV with syntax:

 r←IRV ballot

where IRV:

takes a right argument in the same format as the result returned by Ballot.
returns a vector of matrices containing each round of tallying, followed by the candidate
number of the winner, if there is one (meaning the election didn't end in a tie).

Examples

 IRV b ⍝ using b from the example above
┌────┬────┬─┐
│1 39│2 67│3│
│2 47│3 83│ │
│3 64│ │ │
└────┴────┴─┘
 IRV b2 ⍝ using b2 from the example above
┌────┬────┬─┐
│1 45│1 55│2│
│2 67│2 81│ │
│3 38│ │ │
└────┴────┴─┘
 ⎕←b3←300 200 100 50 50 100,⍪↓6 4⍴1 0 2 0 0 1 0 2 2 0 0 1 0 2 1 0 0 2 0
1 3 2 1 0
┌───┬───────┐
│300│1 0 2 0│
├───┼───────┤
│200│0 1 0 2│
├───┼───────┤
│100│2 0 0 1│
├───┼───────┤
│50 │0 2 1 0│
├───┼───────┤
│50 │0 2 0 1│
├───┼───────┤
│100│3 2 1 0│
└───┴───────┘
 IRV b3 ⍝ end in a tie, so there is no trailing winning candidate
element
┌─────┬─────┐
│1 300│1 400│
│2 200│2 400│
│3 150│ │
│4 150│ │
└─────┴─────┘

 IRV ¯10 Ballot 200000 ⍝ your results will likely be different
┌────────┬────────┬────────┬────────┬────────┬────────┬────────┬────────┬────

│ 1 19831│ 1 21812│ 2 24359│ 2 27375│ 3 31627│ 3 36880│ 3 43999│ 3 54868│ 5
73329│10│
│ 2 20023│ 2 21921│ 3 24793│ 3 27784│ 4 31364│ 4 36690│ 4 43968│ 5 55101│10
73790│ │
│ 3 20304│ 3 22308│ 4 24440│ 4 27491│ 5 31603│ 5 36814│ 5 44206│10 55328│
│ │
│ 4 19989│ 4 22005│ 5 24605│ 5 27620│ 6 31267│ 9 36428│10 44090│ │
│ │
│ 5 20142│ 5 22162│ 6 24416│ 6 27418│ 9 31351│10 36679│ │ │
│ │
│ 6 20015│ 6 22035│ 7 24325│ 9 27423│10 31512│ │ │ │
│ │
│ 7 19864│ 7 21873│ 9 24365│10 27515│ │ │ │ │
│ │
│ 8 19772│ 9 21967│10 24401│ │ │ │ │ │
│ │

│ 9 20001│10 21992│ │ │ │ │ │ │
│ │
│10 20059│ │ │ │ │ │ │ │
│ │
└────────┴────────┴────────┴────────┴────────┴────────┴────────┴────────┴────

5: Base (1 task)
Base85, also known as Ascii85, is a binary-to-text encoding that is more efficient than
Base64. Base85 uses five ASCII characters to represent four bytes of binary data (a 25%
size increase), whereas Base64 uses four characters to represent three bytes of data (a 33%
size increase). Your task here are is to write a single function to encode a series of integers
in the range [0,256] to a Base85 string and vice versa.

In theory, any set of 85 unique, single-byte, characters could be used as the encoding
character set. Several "standard" variations exist. Two of them are "Original" and "Z85":

The Original character set uses the ASCII characters 33-117 ('!'-'u'):
 ⎕←Original←⎕UCS 32+⍳85
!"#$%&'()*+,-./0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstu

Z85 uses the following character set:

Z85←'0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ.-:+=^!/
&<>()[]{}@%$#'

There are also several Base85-encoding methods, some of which have special treatment
for compressing data, or to preserve the length of the encoding input, or to add prefix or
suffix information. To (hopefully) avoid confusion, we'll describe the steps to encode and
decode here.

To Encode:
1. If the length of the input data is not a multiple of 4, pad it with 0s to make its length

divisible by 4.
2. Convert the Step 1 result from base 256 to base 85.
3. Use the Step 2 result to index into the encoding character set.
4. Drop as many elements from the end of the Step 3 result as you added in Step 1.

To Decode:
1. If the length of the input data is not a multiple of 5, pad it with as many of the last

character in the encoding character set as needed to make its length divisible by 5.
2. Convert the Step 1 result to its ordinal positions in the encoding character set.
3. Convert the Step 2 result from base 85 to base 256.
4. Drop as many elements from the end of the Step 3 result as you added in Step 1.

85

Base85-encoded data can include whitespace and line-break characters that might be
used for formatting or other purposes. These characters should be ignored when
decoding. This convention can be extended such that any character that is not an element
of the encoding character set should be ignored.

Task 1: Write a dyadic function named Base85 with syntax:
 result←variant Base85 data

where Base85:

has a left argument variant that is a length-85 character vector representing a valid
encoding character set.
has a right argument data that is one of the following:
1. a character vector representing a valid Base85-encoded string to be decoded.
2. a numeric vector or scalar with values in the range [0,255] representing the bytes to

be Base85-encoded.
returns respectively:
1. a numeric vector with values in the range [0,255] representing the decoded binary

data.
2. a character vector representing the Base85-encoded argument.

Examples:
 Original Base85 ⎕UCS 'Hello World'
87cURD]i,"Ebo7
 Z85 Base85 ⎕UCS 'Hello World'
nm=QNzY&b1A+]m
 Original Base85 0 0 0 0 0 0
!!!!!!!!
 Original Base85 8⍴'!'
0 0 0 0 0 0

⍝ Your function should round-trip properly
 'Hello World'≡⎕UCS Z85 Base85 Z85 Base85 ⎕UCS 'Hello World'
1
⍝ Or more compactly
 Z85 (Base85⍣2 ≡ ⊢) ⎕UCS 'Hello'
1
 ⎕UCS Original Base85 '7!W 3WD ⍴ eC1 ⌈ Y:eU' ⍝ remember to ignore
characters not in the encoding character set
Dyalog APL

6: It's a Date! (1 task)
Dyalog version 18.0 introduced two date-related features:

⎕DT which converts date and time stamps between almost every imaginable format.
1200⌶ which formats Dyalog Date Numbers according to a specified pattern and upon
which this problem is based.

The integral part of a Dyalog Date Number is an offset from day 0 (31 December 1899).
The fractional part of a Dyalog Date Number represents the timestamp fraction of a day.
For example, 12:00:00 is 0.5.

Task 1: Write a dyadic function named DDN (for Dyalog Date Number) with syntax:
 ddn←pattern DDN string

where DDN:

has a character vector left argument pattern that represents a valid left argument
(formatting pattern) to 1200⌶. Due to the complexity of this problem, we will limit what
pattern can contain as follows:
pattern can contain any of the patterns in the Variations column found in the
1200⌶ documentation, excluding the fractional seconds patterns (fractional seconds
patterns are excluded due to the variation in precision across platforms).
No variable length numeric fields will be placed immediately next to another numeric
field. For example, you will not encounter a pattern such as 'hYYm' as some of the
possible solutions to '12012' could be 1:12 in a year ending in '20', or 12:02 in a
year ending in '01'.
The only alphabetic characters in pattern will be part of a variation pattern. There
will be no alphanumeric constants in pattern.
There will be no quoted substrings in pattern.

has a character vector right argument string that is the result of
 string ← ⊃pattern (1200⌶) ddn

where ddn is a Dyalog Date Number, and in which:
all day names and abbreviations, month names and abbreviations, AM/PM
designations, and ordinals use their default English values.
the only alphanumeric characters will be formatted elements of the date/time.

returns a Dyalog Date Number ddn that would satisfy
 string ≡ ⊃pattern (1200⌶) ddn

There will be more than one value for ddn that satisfies the requirement; you only need
to return one value.

https://help.dyalog.com/latest/#Language/System%20Functions/dt.htm
https://help.dyalog.com/latest/#Language/I%20Beam%20Functions/Format%20Datetime.htm
http://help.dyalog.com/18.0/#Language/I%20Beam%20Functions/Format%20Datetime.htm

Notes:

It will be helpful, but not necessary, to solve this problem using Dyalog version 18.0 (or
later).
Your solution should satisfy:
 string ≡ pattern (1200⌶) pattern DDN string

Examples:
 'Ddd, DD-Mmm-YYYY hh:mm:ss' DDN 'Thu, 17-Feb-2022 15:10:07'
44608.63203

 'MM/DD/YY tP:mm' DDN '02/17/22 3P:39'
44608.65215

 'Dddd' DDN 'Thursday' ⍝ any Thursday will suffice
43208

