
 Day 1: Third Generation Dyalog APL - Objects

59 of 195

Module9: C Function Access

Dynamic Link Libraries (DLLs) are libraries of compiled subroutines. These functions can be accessed

and run from within an APL workspace by means of the system function ŒNA. Details may be found in

the Language Reference.

§ 9.1 Declaring dataTypes of Arguments and Results

§§ 9.1.1 Quick View of DLLs and their Contents

The main sources of useful compiled C functions for general APL applications are to be found in the files

advapi32.dll, gdi32.dll, kernel32.dll and user32.dll. These files reside in the ..\windows\system32\

directory under Windows XP. The Windows utility QuickView which used to be included with the

Accessories of Windows 98 is no longer supplied with later versions of Windows. This facility was very

useful as it allowed one to find out what functions are included in any given DLL.

However, a full list of usable Windows functions is given in the MSDN library, at

http://msdn.microsoft.com/library/, under [Win32 and COM Development][Development

Guides][Windows API][Windows API][Windows API Reference], where functions from various DLLs

are listed by name or by category. As is often the case with Microsoft documentation, unless you know

what you are looking for, the volume of almost unnavigable technical information can be disheartening.

Nevertheless there are numerous other sources of information in books, such as Microsoft Windows 32

API Programming Reference, Volumes 1 and 2 from Microsoft Press, and on the Internet.

§§ 9.1.2 The Meaning of the right Argument of ŒNAŒNAŒNAŒNA

 ŒNA CVec © Fixes function as defined by CVec

The character vector Rarg to ŒNA contains a number of distinct parts. Essentially, there are 4 separate

parts in the string.

1. The first describes the variable dataType of the result. This element may be elided if there is no

result from the C function, or if none is required.

2. The second part is the name of the file containing the compiled C function. This may be the full

path name if the DLL is not in a visible directory such as ..\system32\.

3. The third part, separated from the second by a bar (|), is the name of the function to be called

from the DLL.

4. The fourth, and most complicated part, contains the specification of the variable dataTypes of the

elements of the (right) argument to be given to the function being fixed from the DLL.

For example, the following CVec refers to a function called SystemParametersInfoA to be found in

library User32.dll.

 'I4 User32|SystemParametersInfoA I4 I4 >{I4 I4 I4 I4} I4'
The basic function result is a 4 byte integer and the argument to be supplied has 4 elements. The first,

second and last are 4 byte integers and the third consists of a string of 4 byte integers which are to be used

to capture the memory contents of a useful set of data indicated by C code pointers.

9.1.2.1

Fix the function SystemParametersInfoA in a clear workspace and display the result of the call

 SystemParametersInfoA 48 0 (0 0 0 0) 0

 Day 1: Third Generation Dyalog APL - Objects

60 of 195

§§ 9.1.3 Discovering C Function Syntax

Let us start with a very simple, but very useful, example. The function GetSystemMetrics takes an

integer argument and returns an integer result. The meaning of the argument and result can be found in

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/getsystemmetrics.asp

According to this documentation, "the GetSystemMetrics function retrieves various system metrics

(widths and heights of display elements) and system configuration settings. All dimensions retrieved by

GetSystemMetrics are in pixels." The calling syntax is given as:

int GetSystemMetrics(

 int nIndex

);

and the single parameter argument, nIndex is defined as "the system metric or configuration setting to

retrieve." There then follows a table of possible values and their meaning. Int is a 32 bit signed integer.

9.1.3.1

Define function GetSystemMetrics in your workspace and determine the meanings of the first

20 calls.

 ŒNA'I4 user32|GetSystemMetrics I4'
 GetSystemMetrics¨¼20
1024 17 17 26 1 1 3 3 17 17 32 32 32 32 20 1280 968 0 1 17

Hint: See function #.WDesign.GetSystemMetrics in the supplied workspace

WDESIGN.DWS for a good short explanation of each metric.

§ 9.2 Examples of C Function Calls

§§ 9.2.1 Simple Examples

Another simple useful example of an API call is the function GetCurrentDirectory which retrieves the

current directory for the current process. Its syntax is documented as:

DWORD GetCurrentDirectory(

 DWORD nBufferLength,

 LPTSTR lpBuffer

);

In this case there is a result described as a DWORD, and a 2-parameter argument described as a DWORD

and an LPTSTR. The meanings of these parameters are defined as "the length of the buffer for the

current directory string..." and "a pointer to the buffer that receives the current directory string..."

This translates to

 ŒNA'kernel32|GetCurrentDirectoryA U4 >0T'

because a DWORD is defined (see below) as a 32 bit (4 byte) unsigned integer, which translates to U4,

and LPTSTR is a pointer to a null-terminated character string, which translate to >0T in ŒNA syntax. The

> indicates that the contents of the pointed memory location assumed by the template argument will be

used and overwritten by pointer-type output from the C function. The zero implies a null-terminated

string, and the T means char, an 8-bit Windows (ANSI) character. GetCurrentDirectoryA is the ANSI

version of the function and GetCurrentDirectoryW is the Unicode version.

So a call such as

 GetCurrentDirectoryA 100 200
C:\Dyalog90

 Day 1: Third Generation Dyalog APL - Objects

61 of 195

fills in an output buffer at pointer position 200 with an ANSI string of up to 100 characters long, the last

character being a terminating null character.

There are 8 bits in a byte. Each bit can be a 1 (ON) or a 0 (OFF) so there are 2*8↳256 possible

combinations of bits in a byte.

1 0 1 1 0 1 1 1
8 bits = 1 byte

ASCII characters use only 7 bits, giving 2*7↳128 combinations. This used to be sufficient space for all

the common letters and symbols on telex and teletype terminal keyboards. The 8
th

 bit was often used in

communications for a parity check. ANSI characters use all 8 bits and therefore allow 256 distinct

characters to be defined – hence the length of ŒAV. Unicode characters take 16 bits (2 bytes), giving

2*16↳65536 distinct combinations. Therefore Unicode allows 65,536 different characters to be

defined.

If interpreted as a number, then 2 bytes can represent any number between 0 and 65535 for (unsigned)

U2, or any number between ¯ 32768 and 32767 for (signed) I2 in which the first bit is used for the sign.

 (16½2)‚(2*15)-1 © Biggest positive number
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 (2*15)-1↳32767

 (16½2)‚2*15 © Smallest negative number (2's complement)
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 -2*15↳¯32768

The GetCurrentDirectoryA function returns the current working directory as a string via a pointer

reference. Be sure to allocate enough space for the string or you might get a GPF! Incorrect coding of

ŒNA function argument parameters is the most common cause of SysError 999 crashes in Dyalog APL.

 Day 1: Third Generation Dyalog APL - Objects

62 of 195

§§ 9.2.2 More complex Examples

We shall look at 3 functions in the ADVAPI32.DLL library, which together give read and write ability to

and from the Windows Registry. They are therefore very useful in many APL applications. The

functions are RegCreateKeyExA, which returns a handle to a given registry key, creating it if it does not

already exist, RegQueryValueExA, which "retrieves the type and data for a specified value name

associated with an open registry key", and RegSetValueExA, which "sets the data and type of a specified

value under a registry key."

These three functions, and others, are well described in a workspace kindly supplied by Alex Kornilovski,

to be found in the [Download] [AKUTILS] section of www.dyalog.com, or in the very large collection

generously provided by Ray Cannon to be found in [Pocket APL][Downloads][padlls.dws].

The GetEnvironment method of Root with argument 'IniFile' returns, by default, the Dyalog

registry subkey of the HKEY_CURRENT_USER key.

 #.GetEnvironment'IniFile'↳'SOFTWARE\Dyadic\Dyalog APL/W 9.0'

RegCreateKeyExA takes this key and returns a handle to it for use with the other 2 functions. The

function syntax is described as:

LONG RegCreateKeyEx(

 HKEY hKey,

 LPCTSTR lpSubKey,

 DWORD Reserved,

 LPTSTR lpClass,

 DWORD dwOptions,

 REGSAM samDesired,

 LPSECURITY_ATTRIBUTES lpSecurityAttributes,

 PHKEY phkResult,

 LPDWORD lpdwDisposition

);

which we may implement as

 ŒNA'ADVAPI32.dll|RegCreateKeyExA U <0T I <0T I I I >U U'

Notice I and U, without a numeric qualifier, implies width 2 for 16-bit DLLs or width 4 for 32-bit DLLs.

 Key„2147483649 © HEX 0x80000001 = HKEY_CURRENT_USER
 SubKey„#.GetEnvironment'IniFile'
 Access„983103 © HEX 0xF003F = KEY_ALL_ACCESS

 rarg„Key SubKey 0 '' 0 Access 0 0 0

 ├RegCreateKeyExA rarg↳600

Read this as "it happens to be true that RegCreateKeyExA applied to the above (enumeration) key and

subkey returns the handle 600." We need to use 600 for the next function call. (The special numbers

quoted above are (slightly) more meaningful in their (documented) HEX representation.)

9.2.2.1

Compare rarg with the C function syntax above and the description of the parameters in

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/regcreatekeyex.asp.

Symbol < indicates a pointer to input to the DLL function.

 Day 1: Third Generation Dyalog APL - Objects

63 of 195

The RegQueryValueEx function retrieves the type and data for a specified value name associated with

an open registry key, identified by its handle.

LONG RegQueryValueEx(

 HKEY hKey,

 LPCTSTR lpValueName,

 LPDWORD lpReserved,

 LPDWORD lpType,

 LPBYTE lpData,

 LPDWORD lpcbData

);

This syntax may be translated to

 ŒNA'I ADVAPI32.dll|RegQueryValueExA U <0T I =I >0T =I4'

The result is a LONG which we can identify as integer I or I4. The key is an unsigned integer, U. The

name of the value of interest is to be input and is interpreted as a null-teminated character string.

 Key„600 © Handle
 ValueName„'log_file'
 DataType„1 © String data type (REG_SZ)

Given the ŒNA specification above we expect RegQueryValueExA to return a 4 element vector

representing the result (I), the dataType (=I), the data (>0T) and the number of bytes used (=I4). Note

that the equals sign (=) is used to specify parameters which are both input (<) and output (>).

 DISPLAY RegQueryValueExA Key SubKey 0 DataType 255 255
+…---------------------------------+
| +…----------------------+ |
| 0 1 |C:\Dyalog90\default.dlf| 24 |
| +-----------------------+ |
+¹---------------------------------+

If we were not concerned with anything but the value Data, we might use the specification

 ŒNA'ADVAPI32.dll|RegQueryValueExA U <0T I <I >0T <I4'
but it is obviously not advisable to completely ignore error flags.

The complementary function, RegSetValueEx, sets the data and type of a specified value under a registry

key. The C function has syntax declared as:

LONG RegSetValueEx(

 HKEY hKey,

 LPCTSTR lpValueName,

 DWORD Reserved,

 DWORD dwType,

 const BYTE* lpData,

 DWORD cbData

);

This may be translated as

 ŒNA'I ADVAPI32.dll|RegSetValueExA U <0T I I <0T I4'

9.2.2.2

Call functions RegCreateKeyExA, RegQueryValueExA and RegSetValueExA with suitable

arguments to access, replace and create various registry entries.

 Day 1: Third Generation Dyalog APL - Objects

64 of 195

§§ 9.2.3 Other API Calls

The workspace SQAPL to be found in the WS directory of your Dyalog APL installation is a very useful

example of a system written in C and linked to APL via ŒNA. The system allows access to ODBC data

sources and is described in chapter 16 of the Dyalog APL Interface Guide.

9.2.3.1

In library User32.DLL there is a function called SetCursorPos which moves the cursor to the

specified (X,Y) screen coordinates, in pixels. The C function syntax is specified as
BOOL SetCursorPos(int X, int Y);

Define this function in you workspace and check that it works as expected.

9.2.3.2

In library User32.DLL there is a function called FindWindowA. This function can determine if

another application is currently running on your system. It accepts two string arguments, one for the class

name of the application, and another for the window title bar caption. The result is an unsigned integer

giving the handle to a window. The first argument is also an unsigned integer which can be given the

value zero. The second argument is a null-terminated string containing the caption of the window.

Define this function in your workspace. Create a Form in the workspace with some specific Caption.

Look at the Handle property of this Form and compare that with the result of the function

FindWindowA.

9.2.3.3

As demonstrated by Thomas Gustaffson, the function WinExec in Kernel32.DLL runs a specified

application and may be used to replace a call such as

 ŒCMD'Notepad' ''
The first parameter argument of WinExec is a pointer to a null-terminated character string that contains

the command line for the application, the second argument is an integer such that 1 means "show

window". Define this function and use it to replace the ŒCMD command above. Note that, as in the ŒCMD

case, the first parameter must be surrounded by double-quotes if there are any spaces in the string.

There are a number of working examples in the supplied workspaces QUADNA.DWS, NTUTILS.DWS

and WDESIGN.DWS. QUADNA contains a particularly interesting example, ChooseColor, which

requires a pointer to a structure which itself contains a pointer to an array. Notice that this workspace

makes calls to the library DYALOG32.DLL. There are many other examples of ŒNA calls in freely

available workspaces such as those generously supplied by Alex Kornilovski and Ray Cannon.

Sometimes the primary difficulty with external functions is not in the construction of arguments but in the

interpretation of the result. For example, GetVersion should be defined as taking no arguments and

returning an integer result. To decipher the meaning of this result requires appropriate documentation, as

can be seen from the code snippet below:

 code„GetVersion
 code„(32½2)‚code
 code„(œcode)(2ƒ¯8†code)
:Select code
 :CaseList (0,¨3 4 5)
 R„'Windows NT/2000/XP'
 :Case 1 4
 R„'Windows 95/98'
 :Case 1 3
 R„'Win32s with Windows 3.1'
 :Else
 R„'?'
 :End

 Day 1: Third Generation Dyalog APL - Objects

65 of 195

This function has been superseded by GetVersionExA in the same library. This new function returns a

more complex structure and may be fixed by

 ŒNA'I kernel32|GetVersionExA ={I4 I4 I4 I4 I4 T[128]}'

§ 9.3 Harnessing large C Libraries

§§ 9.3.1 Fastest Fourier Transform in the World

FFTW is a free C subroutine library for computing the discrete Fourier transform in one or more

dimensions, of arbitrary input size, and of both real and complex data, as describes in the owner’s web

site http://www.fftw.org/.

The C function DFT.C below has been written on top of some of the principle calls to FFTW in order to

create a function with relatively straight-forward arguments for a ŒNA call. It is therefore probably not

still the Fastest Fourier Transform in the World, but it is nevertheless a very useful addendum to Dyalog

APL.

DFT.C

/* dft.c discrete fourier transform */

#include <fftw.h>

__declspec(dllexport) void dft(int *rank, const int *shape, double *data)

{

 fftwnd_plan plan;

 plan = fftwnd_create_plan(*rank, shape, FFTW_FORWARD, FFTW_IN_PLACE);

 fftwnd_one(plan, (void*)data, 0);

 fftwnd_destroy_plan(plan);

}

This function and the inverse function IDFT.C are to be found in the supplied file FFTW.DLL.

9.3.1.1

Given the above C function header, compose the right argument of ŒNA and compare with line [15]

in the function below.

 Day 1: Third Generation Dyalog APL - Objects

66 of 195

§§ 9.3.2 Open Graphics Library

The OpenGL graphics library is an interesting application of ŒNA. OpenGL is described in

http://www.opengl.org/documentation/spec.html?1.1/glspec.html

Alexander (Sasha) Skomorokhov, Alexei Zalivin and Alexander Kornilovski have kindly provided code

that covers many of the OpenGL calls. Their workspace, DEMOGL.DWS, may be downloaded from the

public download section of www.dyalog.com. It contains a number of static and dynamic examples.

Alexander Kornilovski has supplied a further workspace, GLAUX.DWS; also downloadable and with

some more complex examples.

9.3.2.1

Explore these workspaces, with particular attention to the arguments of the 200 or so ŒNA calls.

§§ 9.3.3 Linear Algebra Package

There are many other freely available sources of code that can be tapped into via ŒNA. Some are single

functions and some are large and complex application, such as PetSc, the Portable, Extensible Toolkit for

Scientific Computation, downloadable from http://www-unix.mcs.anl.gov/petsc/petsc-2/ .

As a final example we consider LAPACK, the Linear Algebra Package downloadable free from

http://www.netlib.org/lapack/ (under GNU license agreement).

 Day 1: Third Generation Dyalog APL - Objects

67 of 195

LAPACK contains hundreds of C functions for real and complex matrix manipulation. Most of these

functions are defined in order to support 2 major goals. The main one is general computation of

eigenvectors and eigenvalues from real or complex square matrices. The other is the equivalent of

monadic and dyadic domino (_) for real and complex matrices.

A subset of these functions has been chosen to cover the essentials of these two goals in order to provide

the basis of two proposed new APL primitive functions ☯ (or %) and �.
See APL81 Proceedings for first mention of symbol � for this purpose.

Monadic ☯ is complex matrix inverse and dyadic ☯ is complex matrix divide. These functions are

modelled by the ambivalent APL function Domino to be found in supplied workspace MATH.DWS.

The convention adopted is that complex numbers are enclosed 2 element vectors.

The primary purpose of LAPACK is the calculation of monadic � (eigen) - the computation of the

eigenvectors and eigenvalues of real or complex square matrices. This function is implemented in the

APL function Eigen to be found in MATH.DWS. Complex numbers are again represented as enclosed

2 element vectors.

Given some complex square i by i matrix, Aii, an eigenvector of Aii is a vector whose direction is

unchanged by the application (matrix multiplication) of Aii. The corresponding eigenvalue is the scaling

factor, which may be complex. In other words, given

 Eji„� Aii
then

 ╞(Aii+.x 1 0‡Eji)−fuzz(i i½Eji[1;])x¨1 0‡Eji
where x is complex multiplication

 ’ R„A x W;Sign
[1] Sign„2 2½1 ¯1 1 1
[2] R„+/Sign×0 1´(2†A)°.×2†W ’
and fuzz is a fuzzy operator to cope with a little algorithm inexactitude.

 ’ R„A(f fuzz)W;CT
[1] ŒCT„2*¯32 ©=2.328E¯10
[2] R„(A+±1)f W+±1 ’

Of particular scientific interest are Hermitian matrices (H), defined by ├H−¢³H , where ¢ (or perhaps m)

is defined as the complex conjugate function. Hermitian matrices are important because their eigenvalues

are real numbers, as are the results of all quantitative measurements. Hermitian matrices are used to

represent detailed measurements in science and engineering.

At this point we introduce a new breed of operator – a monistic niladic operator - which takes a matrix

left operand and returns a related matrix. These operators are intended to generalise to matrices of

functions as outlined in § 11.3.

 Arr2„Arr1
T © Transpose array Arr1

 Arr2„Arr1
-1 © Inverse of array Arr1

 Arr2„Arr1
* © Complex conjugate of array Arr1

 Day 1: Third Generation Dyalog APL - Objects

68 of 195

 Arr2„Arr1
� © Complex transpose of Arr1

The function ’EV’ below is a canonical version of the function ’Eigen’ in MATH.DWS. Line [11]

calls function ’ZHEEV’.

’ZHEEV’ is a cover function for the LAPACK function zheev_ which is fixed from the supplied

LAPACK.DLL on line [19] of ’ZHEEV’ and called on line [22].

 Day 1: Third Generation Dyalog APL - Objects

69 of 195

9.3.3.1

Compare the ŒNA call in ’ZHEEV[19]’ with the snippet of C code in file ZHEEV.C below taken

from the corresponding uncompiled LAPACK function zheev_.

ZHEEV.C

#include "f2c.h"

/* Subroutine */ int zheev_(char *jobz, char *uplo, integer *n, doublecomplex

 *a, integer *lda, doublereal *w, doublecomplex *work, integer *lwork,

 doublereal *rwork, integer *info)

{

/* -- LAPACK driver routine (version 2.0) --

 Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,

 Courant Institute, Argonne National Lab, and Rice University

 September 30, 1994

Specification of the right argument to ŒNA can be arbitrarily complex. Errors in the specification can

cause Dyalog APL to crash with a System Error 999 and therefore care should be taken when

constructing ŒNA calls.

Without a left argument ŒNA fixes a function whose name is that of the C function involved. However,

ŒNA can take a left argument of a character string giving a different name to the function to be fixed in

the workspace.

9.3.3.2

Ask for the next module on runtime applications ☺.

