
 Day 1: Third Generation Dyalog APL - Objects

46 of 195

Module7: OLE Clients

OLE Clients drive OLE Servers via Object Linking and Embedding. This leads to very powerful

connections between applications such as Dyalog APL and Microsoft Office.

§ 7.1 Inside Microsoft Word

§§ 7.1.1 Registry Entries, Object Models and Type Libraries

If Microsoft Office is installed on your computer, then Word.Application will appear in the list

#.OLEServers. The corresponding class ID agrees with that in the registry under

HKEY_CLASSES_ROOT\Word.Application\CLSID. The registry entry then points to the most up-to-date

version of Word currently installed, such as Word.Application.9.

This can be investigated further to find that HKEY_CLASSES_ROOT\CLSID contains key
{000209FF-0000-0000-C000-000000000046}\LocalServer32

which contains the name of the program used for OLE automation:
C:\PROGRA~1\MICROS~2\Office\WINWORD.EXE /Automation

The Word program is vastly more complicated than our server of Module 6, and understanding its object

structure and contents is a major task. The Word 9.0 VBA help file (VBAWRD9.CHM) is most helpful in

this regard. The help file is particularly useful to programmers wishing to call Word object methods and

properties from different environments such as VB or APL.

The Word object model reveals all the potential object hierarchies in a Word application. The properties

and methods associated with each type of object are described in the help file, often with an example

VBA call. This is close enough to the APL equivalent to be most useful when programming Word-linked

APL applications.

To access an OLE server, you create a namespace of type OLEClient as an instance of the OLE server.

The ClassName property of the OLEClient identifies the server and has to be set at create time. It

has value 'Word.Application' in the case of Microsoft Word.

 Day 1: Third Generation Dyalog APL - Objects

47 of 195

7.1.1.1
Create an OLEClient object with ClassName set to 'Word.Application'. Open the

workspace explorer and browse the loaded type libraries. For example, explore the Microsoft Word

Object Library and look at Objects\Documents\Methods\Open. Relate this to MS Word [File][Open].

7.1.1.2

Change into the OLEClient space, and compare the above with the result of

 †Documents.GetMethodInfo'Open'
Thus there are a number of ways to find out the calling syntax and argument types for methods in Word.

§§ 7.1.2 Digging into Word
7.1.2.1

In a clear workspace, start Word as an OLE Client and change space into the Word application.

 ŒCS'WRD'ŒWC'OLEClient' 'Word.Application'
Set the Visible property to 1. Write a function called ’show’ which displays its Rarg in the session.

Set the Event property for all events to ’show’.

 Event„'All' 'show'
Look at the EventList property and try to fire an event which will show in the session. In Word,

select [File][Exit] and note the Quit event in the session.

7.1.2.2

In a clear workspace, trace the function below and identify the methods and properties being used.

 ’ WordExample;WRD
[1] :With 'WRD'ŒWC'OLEClient' 'Word.Application'
[2] Visible„1
[3] :With Documents
[4] :With Add «
[5] :With Content
[6] Text„,(50 50½ŒA),3œŒTC
[7] :End
[8] SaveAs'c:\myword.doc'
[9] :End
[10] :End
[11] Quit «
[12] :End ’

At each change of space, check the name of the current namespace and the methods and properties

available in that space. Right click on methods Save, SaveAs and Quit to view their calling

information. In the workspace explorer, investigate the #.WRD object and its children.

Notice that some of the reported namespace names are surrounded with brackets, eg

)ns
#.WRD.[Documents].[_Document]

 Day 1: Third Generation Dyalog APL - Objects

48 of 195

This indicates that these namespaces have not actually been given any name at create time. Documents

is a property that returns a reference to a collection object. This reference is sufficient for :With to be

able to deal with the collection, which is essentially a vector of objects (see Module11 on Arrays of

Objects). Add is a method that returns a reference to a new document object. The result could be

assigned to a name if a name is required.

Information about properties in the current space may be found using GetPropertyInfo method of

OLEClient objects. eg In the Documents collection, GetPropertyInfo'Count'↳VT_I4.

§§ 7.1.3 Demonstrating the Power of OLE

7.1.3.1
In a clear workspace, create an OLEClient for the OLE server Word.Application. Enter the

Documents collection and Open file C:\myword.doc. Make Word Visible.

7.1.3.2

Enter the Documents collection and Add a new document. Trace the following function snippet

which adds and fills and colours a Table.

:With Tables
 :With Add(#.WRD.Selection.Range,3,5)
 :For x :In ¼3
 :For y :In ¼5
 (Cell(x,y)).Range.InsertAfter'Cell(',(•x),',',(•y),')'
 :EndFor
 :EndFor
 Columns.AutoFit
 :With Rows
 :With Item 1
 Select
 Alignment„1
 :With #.WRD.Selection.Font
 Bold„1
 Color„256 256 256ƒ²255 127 0 © Orange
 :End © font
 :End © row
 :End © rows collection
 :End © table
:End © tables collection

7.1.3.3

While still within the new document, enter some text after the table using something like the

following snippet, noting the parentheses and the reduced number of :Withs.

:With Paragraphs.(Item Count)
 Range.Text„1000½100†20‡ŒAV
:End © paragraph

7.1.3.4

While still within the document, add some suitable text to the first cell in the table and convert the

text into a table (within a table) as in the following snippet:

:With Range(0,0)
 Text„,(•(•¨¼10),'#',¨10 2½•¨¼30),3œŒTC
 Select © this selects all
 DefaultTableSeparator„'#'
 ConvertToTable'#'

 Day 1: Third Generation Dyalog APL - Objects

49 of 195

 :With Tables
 :With Item 1
 :With Columns
 :With Item 1
 Select
 :With #.WORD.Selection.Font
 Bold„1
 Color„256 256 256ƒ²0 0 255© Blue
 :End © font
 :End © column
 :End © columns collection
 :End © table
 :End © tables collection
:End © range

Tip: A useful way of constructing such code, apart from valuable help from VBAWRDx.CHM, is to record a macro in

Word which takes the steps that you want your program to take, and then use Alt+F11 to examine the VBA code.

Tip2: You might find that after creating and destroying (erasing or expunging) an OLEClient and saving the WS that

the size of the WS has grown considerably. This happens because the TypeLibs, visible in WS Explorer have been saved

too. They may be removed before saving by running the Root methods

 #.DeleteTypeLib¨œ¨#.ListTypeLibs

§ 7.2 Manipulating Microsoft Excel from the Inside

§§ 7.2.1 Recognising the Object Model

The object model for Excel is very similar in appearance to that of Word. The model for Excel 9.0 is to

be found in help file VBAXL9.CHM. It is advisable to use the correct version of this help file for your

particular Excel version.

As with Word, the registry entries for the Excel.Application ClassName can be investigated. More

importantly from the point of view of writing APL-Excel OLE applications, the TypeLibs in WS

Explorer, or GetMethodInfo, GetPropertyInfo, GetEventInfo and GetTypeInfo, should

be used to obtain information about Excel functionality.

§§ 7.2.2 Digging into Excel

7.2.2.1
Create an OLEClient with ClassName Excel.Application. Make the application Visible. Set

the application Caption to 'L&G Excel'. Look at the values of the application properties

MemoryFree, MemoryUser, MemoryTotal, LibraryPath, TemplatesPath, Path, Name,

UserName, Value, Version, Height, Width and WindowState.

7.2.2.2

With the Workbooks collection, Add a new workbook and look at the values of properties

Author, Path, Name, FullName and UserStatus. Run GetMethodInfo on methods SaveAs

and Close and then save the file as something like 'C:\myexcel.xls' and run the method Close. Then

Quit the application.

7.2.2.3

Write a function that will start Excel (visibly), enter the Workbooks collection and Open the

workbook 'C:\myexcel.xls'. In the application space, assign the Range between A1 and B2 in the

ActiveSheet to a name for the reference and then assign the Value (or later the Value2) property of

the ref to a suitable matrix.

 Day 1: Third Generation Dyalog APL - Objects

50 of 195

7.2.2.4
Under this different style of programming, trace the following function and explore the references.

 ’ OLEExcel2;XL
[1] ŒCS'#.XL'ŒWC'OLECLIENT' 'Excel.Application'
[2] Visible„1
[3] Wkb„Workbooks.Open'c:\myexcel.xls'
[4] Wks„Wkb.Worksheets.Item 1
[5] Rng„Wks.Range'A1:B10'
[6] Rng.Value2„?10 2½100
[7] Ch„Charts.Add «
[8] Ch.ChartType„xlColumnClustered
[9] Ch.SetSourceData #.XL.Rng
[10] ’

§§ 7.2.3 Gaining full Control of Excel

Like Word, Excel is a big program with many dark corners. Thankfully, the task of learning how to use

the OLE interface mirrors quite closely the task of learning how to use Excel itself. (The task of learning

WORDBASIC, used with the APL shared variable approach to DDE communication with Word, was

closely tied to the menus of Word, but now with OLE much more of the functionality of Word is

exposed.) Each little step in Excel which can be incorporated in an APL program acts as a stepping stone

for ever more ambitious and detailed communications with Excel.

The Word document of the monumental Dyalog APL Object Reference manual itself embodies an

example of Word-APL OLE. Each description of an object in the manual opens with a section containing

Purpose, Parents, .., Methods. The contents of these sections are mustered and positioned in the Word

document via OLE in an APL workspace, thanks to the tireless work of Peter Donnelly.

7.2.3.1

Write a function ’putMatrix’ which takes a matrix Rarg and an optional Offset Larg and

places the matrix in an Excel worksheet, offset by the given number of rows and columns.
Tip: ŒA,(,ŒA°.,ŒA),(,ŒA°.,ŒA°.,ŒA) generates the names of the first 18278 column

names in an Excel worksheet (see a generalised version in the DFns Module12☺.

§ 7.3 Linking to other Servers

§§ 7.3.1 Outlook

If Outlook.Application is in you list of OLEServers, then you can create an OLEClient with this

ClassName. In that space you will find a method called CreateItem. This method returns an object

whose type is determined by the Rarg. Available types are to be found in the list of Enums in the WS

Explorer TypeLibs Loaded Libraries, in the Microsoft Outlook 9.0 Object Library. The Enums section

has an entry called OlItemType. This contains a list of possible types and the Enum appropriate in each

case. For example, to create a mail item use Enum olMailItem which has value zero. Thus the

CreateItem method can take a Rarg of 0 or olMailItem. (olMailItem is an invisible keyword in

the WS, not listed under)VARS or)PROPS and with ŒNC'olMailItem'↳0)

7.3.1.1

Enter the following two lines and assign the properties Subject and Body to suitable values. The

Body of a message is a character string, as may be deduced from the result of

GetPropertyInfo'Body'. Each new line in the Body should be terminated with a linefeed

character. If ├ŒML<3 then ├ŒTC[1+ŒIO]−ŒAV[2+ŒIO] and this is the linefeed character needed.

 ŒCS'Outlook'ŒWC'OLEClient' 'Outlook.Application'
 ŒCS CreateItem olMailItem

 Day 1: Third Generation Dyalog APL - Objects

51 of 195

The current namespace contains a property that returns a Recipients collection. As usual, in this

collection space there is an Add method that returns an object of appropriate type. The Add method type

library calling information describes the Rarg of Add as VT_BSTR. It is in fact an enclosed character

string which corresponds to an entry in your Outlook address book or a raw email address. For example

 Recipients.Add›'Karen Shaw'
will check your address book and resolve the entry, if possible. If you are lucky, it might be resolved to

karen.shaw@monadic.com or karen.shaw@dyadic.com or perhaps to briony.williams@triadic.com. Or

you could add the recipient's email address directly as

 Recipients.Add›'karen.shaw@dyadic.com'
Any number of recipients may be added in this way.

You can tell if a name was resolved successfully from the result of the niladic method; Resolve. If it

does not get resolved properly and ├~Resolve then the message may be removed by means of the

Remove method in the Recipients collection. The Rarg of this method is the item number of the

recipient object in the collection. If there is only one recipient object in there, then Rarg is 1.

At this point the Type of the message may be changed. (Note the Type keyword conflict resolution.)

The default Recipeients.Type is 1, or olTo, but it could be any of a number of Types, their Enums

being those in the group OlMailRecipientType. (Double clicking on these key words in the APL

session displays their contents.)

The names of those to whom the message will be address is returned by the To property in the unnamed

[_MailItem] namespace. If some of the recipients were of Type olBCC then the property BCC returns the

list of names.

At this point all that needs to be done is to run the niladic, non-result returning method Send.

7.3.1.2

The mail item namespace contains a property called Attachments that returns a collection of

attachment objects. Attach a file to an email by calling the Add method of this collection after checking

the method's calling information using the property sheet obtained by right-clicking on the method name

in the session, or by way of the WS Explorer.

 Attachments.Add'C:\myword.doc'

§§ 7.3.2 Microsoft Internet Explorer

Have you ever wanted an APL function which takes a url as its argument and returns the retrieved html

text as its result? The InternetExplorer.Application may be used for this, as Tommy Johansen has shown

to the dyalogusers@yahoogroups.com mailbox group.

7.3.2.1

Start Internet Explorer as an OLEServer by

 ŒCS'IE'ŒWC'OLEClient' 'InternetExplorer.Application'
Your program might need a delay (ŒDL) of a few seconds at this point to give time for the server to

initialise properly. There is a Busy property in the application that should be checked after each

significant action and a short delay included in the program :While Busy. Visible may be set to 1

if you wish to see the net activity.

7.3.2.2

Find an address of interest and Navigate to that address, eg

 Navigate'http://www.simcorp.com'
or

 Navigate'http://finance.yahoo.com/q/ecn?s=IBM'
or

 Day 1: Third Generation Dyalog APL - Objects

52 of 195

 Navigate'http://finance.yahoo.com/p?v&k=pf_1'

7.3.2.3

In order to obtain the body section of the resulting html, first get the DispHTMLDocument object

returned by the Document property and then the get the DispHTMLBody object returned by the

document's body property. Note the lower case spelling of body and of many of the object's other

properties and methods. The outerHTML property of the DispHTMLBody object contains the

<BODY>..</BODY> character string.

§§ 7.3.3 Beyond

It is possible, through OLE, to link with any of the servers listed by the Root property, #.OLEServers.

For example, if you have DAO.dbEngine installed then it is possible to read data from Microsoft Access

files directly into an APL workspace. Or if you have CrystalReports installed you can communicate

directly with that. All sorts of applications, from computer-animated synthespians (examples of which

may be downloaded from http://www.microsoft.com/MSAGENT/downloads/user.asp) to music and radio

players, may be incorporated in your APL applications by object linking and embedding.

As a final example, the call to ŒCMD to open Notepad

 ŒCMD'Notepad' ''
may be replaced by

 'WSS'ŒWC'OLEClient' 'WScript.Shell'
 WSS.Run'Notepad'
or

 WSS.Exec'Notepad'

Remember to clean up the workspace by

 #.DeleteTypeLib¨œ¨#.ListTypeLibs
before saving if you don't want to save all the TypeLibrary information in the workspace.

7.3.3.1

Ask for the next module on ActiveX Controls ☺.

