Day 1: Third Generation Dyalog APL - Objects

Module5: Control Structures

§ 5.1 Logical Decisions and Jumps

In APL 1 and APL 2, program flow was controlled by branch (=) and also, sometimes, by execute (¢) and
OSIGNAL plus OTRAP. In APL 3 program flow may be controlled by more readable control structures
such as : T f. There are 8 different types of control structures in Dyalog APL. They are defined by the
control words : T f, :While, : Repeat, :For and : Select, :With, :Trap, :Hold. Like line
labels, these structures are only usable inside programs, not in immediate execution mode.

§§ 5.1.1 The : I f Statement

: I f is a simplified version of branch (+).

:If Propo .. ¢:End a If Prop 1Is true execute...code

If fProp,ie Prop=1u1, where Prop is a logical (Boolean) proposition and therefore either true(1) or
false(0), then execute the code indicated by ..., otherwise end the : T f statement.

:If Prop¢..o:Elseo ... o:End a If Prop is false execute second ...

If FProp, then execute the code indicated by the first ... expression, otherwise |~Prop and the second ...
expression is executed before ending the : I f statement.

:If Proplo..o:Elself Prop2¢ ...¢:End

A : If statement may be embedded in another by means of the : £ Ise I f conditional.

5.1.1.1 .
Rewrite

¢ (0=0NC'Forename')/'Forename<«'"'"'""
ina : If statement.

§§ 5.1.2 Further truth Conditionals

:If Proplo:AndIf Prop2¢..0:AndIf PropNo..o:End

Any number of : AndI f conditionals may be included after : 7f or : Else or : E lseIf conditionals.

:If Propl¢:0rIf Prop2¢..¢:0rIf PropNo¢..¢o:End

Any number of : 0rIf conditionals may be included after : 7f or : EIse or : E IseIf conditional
segments. : AndIfsand :0rIfs may notbe mixed within individual segments of code.

>12IR ewrite the function below in APL 1 (1* generation) language.

vV pass(A B C D E)

(1] :If A

[2] :AndIf B

(3] '"A and B!

(4] :ElseIf C

[5] :0rIf D

[6] :0rIf FE

(7] 'C or D or E

(8] :Else

(9] 'not A and not C'

36 of 195

&
= Day 1: Third Generation Dyalog APL - Objects

[10] :End
\Y

Which notation is more legible? What other pros- and cons- can you think of?
>122Rewrite the expression

i(P,\Q)/rrlp and Qi
where P and Q are propositions, without using any of the symbols ¢>. Replace (PAQ) with an arbitrary
logical expression involving logical connectives and (»), or (v) and not (~), eg ((PvQvR)A~PAQ), and
rewrite it in a : I f statement control structure?

§§5.1.3 The : se Iect Statement

: Select is asimplified version of branch (-).

:Select Arro:Case Arrio..o:Case Arr2¢...0...0:End n Execute...case

Execute the code in the : Case segment expression which satisfies fArr=4Arrny . The last ... in this

structure implies the possibility of more : Case ArrXo...code snippets.

:Select Arr¢:Case Arrio..o:Case Arr2¢...0...0:FElseo...o:End

5-13-1Run the function below with various sorts of arguments, such as
WhatIs [NULL

V WhatIs I

[1] :Select T
[2] :Case 1 o 'I=1"
[3] :Case 2 o 'I=2!
(4] tElse o "((Iz1)A(Iz2))v(~I=1)A~I=2"
[5] :EndSelect
v

and then replace : E Ise with a suitable : CaseList conditional qualifier, the definition of which is to
be found in [Help][Language Help] or the invaluable Dyalog APL Language Reference.

§ 5.2 Looping Constructs
§§5.2.1 The : For Statement

In many computer languages, a For statement provides a compact way to iterate over a range of values.
: For is a specific application of branch ().

:For Var :In Veco.Var...o:End a Execute.Var.. for each Sc in ,Vec

In each iteration, V ar takes the value of the next element of vector ,Vec.
>2LIRewrite the expression +/NumVec in a : For statement, using [JMONITOR to compare efficiencies.

>212When might this looping mechanism sometimes be preferable to using operators such as each (*")?
Hint: try tracing examples of both options.

>23Convert a looping statement such as
Loop: ©¢..0 ~Loopxxi1Bool

into a : For statement.

37 of 195

R

Day 1: Third Generation Dyalog APL - Objects

§§ 5.2.2 Generalised : For Statements

The Var entry may be replaced by multiple variable names. In this case Vec is expected to be a vector
of vectors and the N™ variable in the list of names is assigned at each iteration to the N™ element in the
disclosed next element of the control vector.

:For Varl Var2 .. :In VecNVeco¢.Vari.Var2...o:End a Strand

In each iteration, V ar takes the value of the N™ element of iteration subvector of the control vector. An
example of a valid line in this case might be

:FOL’ V1 VZ V3 :In (1 2 3)(”- 5 6)()

An alternative definition is used if : I n is replaced with : TnFach. Again Vec is expected to be a vector
of vectors but in this case the N™ variable in the list of names is assigned, at each iteration, to the next
element in the N™ element of the control vector.

:For Varl Var2 .. :InFach NVecVec ¢.Vari.Var?2..¢:End @ Distribute

In each iteration, V ar N takes the value of the next element of vector N>NVecVec. An example of a
valid line in this case might be
:For V, V, V5 :InFach (1 4 .)(2 5 ..)(3 6 ..)

In Modulel1 we shall see how a collection object may be treated as a Vec in a : For statement.

§§5.2.3 : Repeat and :Whi le Loops

:Repeato...o:Until Prop n Repeat execution of ...until |-Prop

This is an infinite loop unless proposition Prop can change from false to true in the process.

>231Write a 2-line function with the infinite loop

(1] :Repeat ¥[2] :Until 04

Run the function and break the execution in a number of different ways. Now convert to a 1-line function
[1] :Repeat ¢ :Until 0

Try to break this loop. Be prepared to close APL. Repeat the experiment simply with [1] -1

:tWhile Propeo..o:End n Execute..while |'Prop

>232] oop round executing some code while proposition Prop is true (1), or :Unt il Prop2 is true.

Note : AndIf or : OrIf may be included in the structure logic of : Whi Ie and at the end of : Repeat.

§ 5.3 Digging
§§ 5.3.1 The : it h Statement

:W 1t his an alternative form to [JCS.

:With O0bjo...o:End a Execute..within object 0bj

0b j may be the name of an object or an object reference (value). The lines of code in ... are executed

inside the space of 0b j. The effect of : Wit h is similar to that of [JC.S. Local variables in the outer
space continue to be visible.

38 of 195

&
= Day 1: Third Generation Dyalog APL - Objects

331 1yrite a function such as
v drill
[1] :With [SE
(2] :With chhbhot
(3] :With bandshi
(4] Dockable
[5] : End
[6] : End
[7] :End
v

to drill into OSE .cbhtop. i 1h. bm and display the Ty pe property at each level.

Within the Dyalog function editor, [Edit][Reformat] indents control structures and substructures
according to the settings in [Options][Configure][Trace/Edit]. As in the case of the : For statement,

:W it h extends to Collections, as described in Modulell. :W it h also extends to unnamed namespaces,
as described in Modulel 1.

§§ 5.3.2 Digging into SubSpaces

Within an APL program one is usually working with local variables and functions all in the same space.
It would therefore be tedious to prefix all names with the space-qualified name, especially for deeply
nested spaces. As we shall see when looking at 0LEC 1 ient objects in Module7, the : Wit h control
structure plays an important role in identifying the current space in a program.

§§5.3.3 : Trapversus JTRAP
: Trap is asimplified version of [JTRAP.

:Trap ENumo...o:End a Trap error ENum and execute

When running code ... , in the event of an error having an error number which is in the list ENum, no

default error action is taken and execution is passed to code after the end of the : Trap control structure,
if there is any. This is similar to the action of something like JTRAP<ENum 'C' '=1+[LC'.

:Trap ENumo...o:Elseo¢...o:End @ On error in first.., do second ..

If an error of type ENum occurs in the first ... segment, then pass execution to the second segment and do
not report the error. Further, disable the error trapping in the processing of the second segment.

:Trap ENumo...o:Case ENumlo..o:Case ENum2¢..¢0..0:End a Split

The last ... in this structure implies the possibility of more : Case ENumXo... code snippets. As in
:Select, :CaselList and : E lse segments may be used here too.

For a summary of the : Ho Id statement, see multi-threading in Module13.

3331 Ask for the next module on OLE Servers

39 of 195

