
WPF/Xaml on the Web

Christopher & Michael Hughes
MJH Software Services Ltd

Overview
WPF and ⎕WC/⎕WS/⎕WG both currently provide excellent GUIs for windows.

For WPF, XAML is best used to define the GUI, though Objects can also be used.
Data is manipulated by APL
Databinding (⌶2015) is used to connect the two together.

For ⎕WC/⎕WS/⎕WG the GUI is manipulated directly.

However good, both GUIs are currently only available on Windows based systems.
This excludes mobile apps, tablets, web browsers, Mac and Linux based systems.

The aim is to address this using a product from Userware (cshtml5.com) which compiles
standard C# and XAML files into HTML5, Javascript and CSS files.
Freeing the Dyalog applications to run on other platforms using familiar GUIs.

http://www.cshtml5.com/

The two presentations
1. “WPF on the Web” will cover the principles of the design.

And will demonstrate an application using XAML.

2. “⎕WC for the Web” will demonstrate a proto-type for an emulation of
⎕WC/⎕WS/⎕WG.

This is a compiled stand-alone application using the methodology
presented in the first presentation.

Definitions

• DataLibrary A collection of DataContexts, each connection
works with 2 DataLibraries, one unique to a Single User or to
Collaborating Users and one Common DataLibrary which is shared
by all Users. Either DataLibrary may be empty. The user perceives
the merged pair as a single DataLibrary.

• DataContext A collection of properties (values) which can be
used as a source for Databinding. There is no limit to the number of
DataContexts in a DataLibrary but their names (not there contents)
must be unique when the two DataLibraies are merged.
DataContexts are implemented as APL Namespaces on the server
and C# classes at the client/browser end.

Dyalog WPF/Xaml on Windows

XAML
Data

Binding

APL code

Dyalog WPF over the Web

Browser:

XAML now
compiled as

html5 and css

Server:

APL code

Internet Internet

(CSHTML5
JavaScript Web

Sockets)

Data
Binding
(Dyalog Conga
Web Sockets)

Simple case

Web Browser 1

Web Browser 2

Web Browser 3

Merged
Data Library 1

Merged
Data Library 2

Merged
Data Library 3

++ more

Individual
Data Library

Individual
Data Library

Individual
Data Library

Common
Data Library

More complex case (collaboration)

Web Browser 1

Web Browser 2

Web Browser 3

Merged
Data Library

Merged
Data Library

Merged
Data Library

++ more

Individual
DataLibrary

Non-referenced
Individual
DataLibrary

Individual
DataLibrary

Common
DataLibrary

Collaboration
DataLibrary

Fast
All GUI processing is done at the browser end.
Screen definitions only sent once
Only very small commands sent to resize, move and manipulate.
Data can be paged.
Server only runs the APL application.

Persistency
Each DataLibrary is a single entity on the server.
Atomically stored in a Sharefile, (ie) one component per DataLibrary so one
component per User.
Saved on a timer so any failures in communication links, etc. can be recovered.
Can allow for multiple components so possible history. Useful if neither
collaborator wants to keep the final result of collaboration at end of
collaboration. They can choose which version they want going forward.
Each component linked to a User name, Collaboration Name, or Temp Id for a
guest (can be upgraded to User on authentication). So allows authenticated
user to return to old session.
sharefile, one component per DataLibrary.
And will demonstrate an application using XAML.

Scalability
A single application workspace can support multiple users seamlessly as
the system will switch the User’s DataLibraries based on the connection
Id (via UserId if authenticated or index of Communication Id if not) (one
processed per & thread).
Multiple copies of the application workspace can be loaded on a single
server (with a different port per instance)
Multiple copies of the application workspace can be loaded on multiple
servers using a combination of different ip addresses and ports.
The vector of DataLibaries can be spread across the instances, the
CSHTML5 Index.html file downloaded first at the start of the application
instance can cycle through server/ports requesting if user limit reached
or request a clean server/port instance for a fresh start.

Flexibility
It lends itself to cloud computing as more servers can be spun up /
removed depending on load.
After an automatic save of the DataLibrary, the application can close the
connection and open a new connection, either by direction or request
cycling as before, and then reload the saved DataLibrary. In this case of a
guest, the Temp Id of the User, can be used..
New list of available servers can be provided by request.
So if a server gets overloaded, fails or any other issue then a user can be
moved to another seamlessly. (perhaps after a short delay).

Security
The application can be set up using either IIS or Appache using either
their pass through mechanisms for Web Sockets (so only standard
http/https ports need to be open through firewall).
Standard IIS/Apache security rules can be used.
UserId/Password only gives access to persisted DataLibraries.
Authentication done by APL in server so can be as complex as required.
Https available through standard Conga certificate options.
Simple component file can be replaced by any file system providing APL
namespaces can be stored.

Robust
DataLibraries are stored on a regular timing pattern (or when a loss of
connection is detected – the application Server will still be running even
if the browser loses contact.
Component files can be backed up.
Component files can be locked
Component files can be dislocated (as per DFS)

Future Proofed
What about WASM (Web Assembly)?

All major browsers are committed to supporting it.

Userware are committed to supporting it – they have a proto-type
already. So their compiler will output HTML5/Javascipt/CSS for older
browsers and Web Assembly for modern browsers. So this approach
continues to be supported on the latest platforms.

At last

The demo ……

	WPF/Xaml on the Web
	Overview
	The two presentations
	Definitions
	Dyalog WPF/Xaml on Windows
	Dyalog WPF over the Web
	Simple case
	More complex case (collaboration)
	Fast
	Persistency
	Scalability
	Flexibility
	Security
	Robust
	Future Proofed
	At last

