JDVYALOC

Belfast 2018

SA2: Performance Tuning

Jay Foad, Roger Hui,
Marshall Lochbaum

Introduction

* Measuring performance
* Data types
* Contiguous data

"6

it

7

Measuring performance

° cmpx
 JPROFILE and JPROFILE
e APLMON

Data types

* Dyalog has many data types

* Smaller ones are (almost) always better!
* [IDR is a useful diagnostic tool...

* ... but can be misleading

N~

‘Wﬁf

Contiguous data

* Array data is stored in memory in ravel order

—> | o0 |01t]|02|03|o4]|o05]| 06|07 |08]09
10 | 11 [12 | 13 | 14 | 15 | 16 [17 | 18 | 19
20 | 21 |22 [23 | 24 | 25 | 26 | 27 | 28 | 29
30 | 31 [32|33 |34 |35 |36 |37]38]39
40 | w1 [w2 | 43 | uu | 45 | w6 [47 | 48 | uo9
50 | 51 [52 | 53 | 54 | 55 | 56 | 57 | 58 | 59
60 | 61 [62 | 63 | 64 | 65 | 66 | 67 | 68 | 69

Contiguous data

* The data for a single row is contiguous in memory

01

05

09

30 [31 | 32 |33 | 34|35 |36 |37 |38]39
40 [w1 | w2 | u3 [w4 | 45 [w6 | 47 | u8 | 4o
50 [51 | 52 | 53 | 54 | 55 [56 | 57 | 58 | 59
60 | 61 | 62 | 63 [64 | 65 | 66 | 67 | 68 | 69

Contiguous data

 The data for a single column is not contiguous

—> | 00| 01|02 o+ | 05 [06 | 07 | 08 | 09
10 | 11 | 12 14 | 15 | 16 | 17 | 18 | 19
20 | 21 | 22 2u | 25 | 26 | 27 | 28 | 29
30 | 31 | 32 3w | 35 | 36 | 37 | 38 | 39
40 | w1 | u2 s | 45 [w6 | w7 | u8 | 49
50 | 51 | 52 54 | 55 [56 | 57 | 58 | 59

Contiguous data

e Efficient operations:
o move whole rows around, or
o move data around within a single row

* |nefficent operations:
o move whole columns around, or
o move data around within a single column

Contiguous data

* Historical note:
primitives inspired by Sharp APL /
strongly encourage you to work on leading axes

* (Some APL2 primitives do too,
notably grade up and grade down)

_—?@m@iﬁ".

Contiguous data

 What if you really need to work on the last axis?

1. Transpose your data, then transpose back
(one day we will implement Under)

2. Try not to have this problem in the first place
5. Think about inverted tables

)
dé -

\0 0,92

Selective assighment

e Back in version 14.1...

(Idxs[JCube) +<« Fn Idxs[[Cube a slow

(P Q R)<«Idxs
Cube[P;Q:R] +« Fn Cube[P:Q:R] n fast

e (This was fixed in version 15.0)

_—?@m@ﬂ‘.

Selective assighment
A<'hello’

(2tPA)«"'xi'

A
hel ix

Selective assighment
A<'hello’

(24PA)«"xi'

A \\\\ 12345

hel ix

—_%/‘ii‘“%‘fiy.

Selective assighment
A<'hello’

(2t0A)«"xi'

A \\\\\»5u-32 1

hel ix

—_%/‘ii‘“%‘fiy.

Selective assighment
A<'hello’

(21PA)«"'xi'

Selective assighment
A<'hello’

(2tA)«"xi'

A\\\\\\\‘A[Shkﬂxf

hel ix

Selective assighment
* Do it yourself!

A<'hel lo’ A<'hel lo’
(21PA)«"xi" AL2tO1pA]«'xi"
A A

helix helix

—_&f?'ﬂl

Selective assighment
* Do it yourself!

A<'hel lo’ A<'hel lo’
(2tPA)«"'xi' Al2tipAl«'xi"
A A

helix helix

—_&f?'ﬂl

Selective assighment

* For vectors the DIY code is pretty fast

* The DIY code also works for higher
ranked arrays

o

Selective assighment

* For vectors the DIY code is pretty fast

* The DIY code also works for higher
ranked arrays

* but the index array 1pA is nested

_—?@m@ﬂ‘.

Selective assighment

* For vectors the DIY code is pretty fast

* The DIY code also works for higher
ranked arrays

* but the index array 1pA is nested
* so performance sucks

_—?@m@iﬁ".

Selective assighment

* Always creates the whole index array

A<11E9
(21A)«"1 A slow
A[1 2]«71 a fast

Selective assighment

* Always creates the whole index array
* ...except when it doesn't

A<11E9
((c1 2)[JA)«<™1 A fast(ish)
A[1 2]«71 a fast

—_&mﬂ.

	SA2: Performance Tuning
	Introduction
	Measuring performance
	Data types
	Contiguous data
	Contiguous data
	Contiguous data
	Contiguous data
	Contiguous data
	Contiguous data
	Selective assignment
	Selective assignment
	Selective assignment
	Selective assignment
	Selective assignment
	Selective assignment
	Selective assignment
	Selective assignment
	Selective assignment
	Selective assignment
	Selective assignment
	Selective assignment
	Selective assignment

