
Elsinore 2023

D02 - The Road Ahead

Morten Kromberg, CTO

The Road Ahead – Dyalog'231

The Road Ahead – Dyalog'232

Geoff has Retired (!)
 With John Scholes, Geoff Streeter implemented

Dyalog APL v1.0 in 1981-1983

 We hope to welcome Geoff back for a retrospective
talk at Dyalog'24 in (September 15-19, Glasgow)

The Road Ahead – Dyalog'233

40 years in pursuit of excellence

Decade Leaders in…
1980's The best APL for Workstations (X-Windows, ⎕SM)

1990's The best APL for Microsoft Windows (⎕WC)

2000's The best APL for Microsoft .NET (⎕USING)

2010's The most complete Array Language (+⌿÷≢) ⍤⌸@⍸⌺

2020's The best APL for Cloud Computing (☁️)

The Road Ahead – Dyalog'234

Major Milestones in 1st 30 years

 1983: APL2 Nested Arrays + SHARP APL
Component Files, Error Trapping, etc

 1990: Namespaces, Windows GUI

 1995: Control structures (If/Then/Else,
Repeat/Until, exception handling, and so on)

 1996: Functional programming: dfns provide
lexical scope and lambda-style expressions

 2006: Object oriented programming, tighter
integration with .NET & OO frameworks

 2013: Rank (⍤) and Key (⌸) operators

 2014: Point-free or "tacit" syntax similar to that
in the J programming language

 2014: Futures and isolates for parallel
programming

More highlights of the last decade

 2015: macOS, RIDE, JSON, Secure Sockets

 2016: Cross Platform File Functions, load & edit
Unicode Test Files using editor

 2017: CSV, HTTP Support in Conga,
HTMLRenderer, Where (⍸), At (@), Stencil
(⌺) and Nest/Partition (⊆)

 2018: aplssh & pynapl, APL as a DLL, Total Array
Ordering, JSONServer

 2019: Link, Unregistered non-Commercial
Version, Headless mode, Containers

 2020: ⎕C, ⎕DT, constant (⍨) over (⍥)
and atop (⍤), unique mask (≠), .NET Core Bridge,
LOAD text files, text config files

 2022: Basic Licence, Shell Scripts, ⎕ATX

Performance increased consistently during
most of this decade.

The Road Ahead – Dyalog'235

Major Milestones in 1st Half of the Fifth Decade
 2024 / Tool Projects

 Tatin & Cider become "mainstream"
 Jarvis & WebSocket integration
 One secret project, come to Glasgow ☺!

 2025 / v20:
 Literal Array Notation
 .NET Generics
 HTMLRenderer (& Conga?) as Open-Source

extensions
 Android version?

 2026 / v21:
 Co-dfns compiler integrated with Dyalog APL
 All asynchronous operations return futures
 Dual / Under, Differentiation

 2027 / v22:
 Multiple Numeric Towers: 64-bit integers,

Rationals, Unlimited-precision integers

(NB Mortens dreams, NOT promises!)

More highlights of the last decade

 2015: macOS, RIDE, JSON, Secure Sockets

 2016: Cross Platform File Functions, load & edit
Unicode Test Files using editor

 2017: CSV, HTTP Support in Conga,
HTMLRenderer, Where (⍸), At (@), Stencil
(⌺) and Nest/Partition (⊆)

 2018: aplssh & pynapl, APL as a DLL, Total Array
Ordering, JSONServer

 2019: Link, Unregistered non-Commercial
Version, Headless mode, Containers

 2020: ⎕C, ⎕DT, constant (⍨) over (⍥)
and atop (⍤), unique mask (≠), .NET Core Bridge,
LOAD text files, text config files

 2022: Basic Licence, Shell Scripts, ⎕ATX

Performance increased consistently during
most of this decade.

The Road Ahead – Dyalog'236

Major Milestones in 1st Half of the Fifth Decade
 2024 / Tool Projects

 Tatin & Cider become "mainstream"
 Jarvis & WebSocket integration
 One secret project, come to Glasgow ☺!

 2025 / v20:
 Literal Array Notation
 .NET Generics
 HTMLRenderer (& Conga?) as Open-Source

extensions
 Android version?

 2026 / v21:
 Co-dfns compiler integrated with Dyalog APL
 All asynchronous operations return futures
 Dual / Under, Differentiation

 2027 / v22:
 Multiple Numeric Towers: 64-bit integers,

Rationals, Unlimited-precision integers

(NB Mortens dreams, NOT promises!)

And… without dates attached

 Universities start offering APL courses
 Not as part of a "comparative" course

 APL recognised as a respectable tool for
modeling machine learning and quantum
computing

 First commercially significant APL application
created by someone who learned APL in this
millennium

 "Full Stack" Web development in APL

The Road Ahead – Dyalog'237

Ken Iverson's Blackboard
arrives in Bramley (2010)

The Road Ahead – Dyalog'238

Dyalog … The Next Generation

Aaron (ACE) Adam (AE) Rich (AE) Josh (A) Stine (D) Karta (C)

Silas (C) Peter (C) Jesus (E)

Legend:

A = APLer
C = C developer
D = Admin
E = Doc/Evangelism

2022

The Road Ahead – Dyalog'239

Dyalog … The Next Generation

Silas (C) Peter (C) Jesus (E)

2022

Stefan (AE) Aarush (AC) Abs (I)Jada (D) Mike (DE)

+

Asher (ACE) Kamila (ACE)

(Summer Interns)

Legend:

A = APLer
C = C developer
D = Admin
E = Doc/Evangelism
I = IT

2023

The Road Ahead – Dyalog'2310

 Santiago Núñez-Corrales PhD, Markos Frenkel, Bruno de Abreu
National Center for Supercomputing Applications

 A Quantum Computing Library for APL

 Jesús Galán López (Ghent University)
 Metallurgy with APL

 Asher Harvey-Smith (University of Warwick)
 (and Summer Intern at Dyalog)

Academic Collaboration

Tuesday 14:00 Teaching Algebra with APL
(Asher Harvey-Smith, U. Warwick)

Tuesday 13:00 quAPL
(Markos Frenkel, NCSA/U.Illinois)

Tuesday 13:30 APL and Metallurgy
(Jesús Galán López, Ghent U.)

Wednesday 11:00 Grain Growth
and Array Programming
(Jesús Galán López, Ghent U.)

The Road Ahead – Dyalog'2311

The Road Ahead – Dyalog'2312

 Can you host a young(er)
member of our team for 3-
5 days?

 Or perhaps even run a
small consulting project
with 1 senior + 1 junior
Dyalogger?

The Road Ahead – Dyalog'2313

2022 Road Map 2023…

The Road Ahead – Dyalog'2314

 Hired lots of new people
 Adjusted Created processes to manage growth
 Summer interns (Wonderful!)
 Two .NET bridges
 Two macOS variants to build & sign
 ARM64 version for the Macs, Pi and AWS Graviton
 Cumulative 3-4 month delay caused collision with Dyalog'23

➢ New Long Term Support version of .NET (8.0) on November 8th
➢ Want to test with 8.0 before General Availability
➢ Official Beta Testing to start mid-November

Why v19.0 is Late…

Excuses

(January 2024)

Excuses

Excuses

The Road Ahead – Dyalog'2315

 Platform Support / Distribution
 64-bit ARM support

 Mx Macs, Pi 4&5, AWS Graviton

 Enhanced .NET Bridge
 Framework vs new .NET versions

 Bound executables on all platforms

 Building Production Systems
 Token range reservation

 WS FULL handling

 NCOPY/NMOVE callbacks

 Developer Productivity / IDE
 Source "as typed" by default

 Multi-line input on by default

 HTMLRenderer updates

 Link 4.0: Support for text data

 HttpCommand client, Jarvis web service

 Installing & Managing APL
 Multiple session files

 Health Monitor

Highlights Version 19.0

The Road Ahead – Dyalog'2316

Service Orientation

A rapidly increasing proportion of new APL code is delivered
as services

 Jarvis wraps APL code as HTTP/JSON or RESTful
services on any platform

 https://github.com/dyalog/jarvis

 Off-the-shelf docker containers containing Dyalog APL
(optionally with Jarvis)

 HttpCommand is our HTTP client

HTTP(s) / JSON

The Road Ahead – Dyalog'2317

Service Orientation

HTTP(s) / JSON

Tuesday 09:00 Dyalog Tools Update
(Brian Becker)

Tuesday 09:30 Converting from COM to a Jarvis Web Service
(Finn Flug, DPC Consulting)

Tuesday 11:00 Dyalog, AWS, Jarvis, Docker…What's Not to Like?
(Claus Madsen, FinE Analytics)

Tuesday 16:45 Dyalog + Kafka = True?
(Stefan Kruger)

Monday 15:15 Transforming and Streamlining a Complex Process
(Mark Wolfson, BIG)

Monday 14:45 APL Worker Bees
(Stig Nielsen, SimCorp)

The Road Ahead – Dyalog'2318

64-bit ARM chips appearing in many places

 M1, M2 & M3 Macs

 Raspberry Pi – 64 Bit

 Amazon Web Services "Graviton"

Arm64

ARM64

Tuesday 10:00 Dyalog on ARM64
(Ron Murray)

The Road Ahead – Dyalog'2319

The Road Ahead – Dyalog'2320

The Road Ahead – Dyalog'2321

The Road Ahead – Dyalog'2322

Apple Hardware

1979: 68000
1994: POWER
2005: Intel x64
2021: ARM64

 Version 19.0 will be available in two
versions for macOS:
 ARM64: M1, M2 and soon M3 based Macs

 Intel x64: For older Macs

 64 bit, Unicode only

 NB: Version 19.0 will be the last
version to support Intel-based Macs.

Dyalog APL for ARM-based Macs

The Road Ahead – Dyalog'2323

Classic
 Down to no more than half a

dozen significant clients
 More than half of these

actively planning - or working
on - moving to Unicode

 May soon decide to offer
Classic on IBM AIX only

32 Bit
 Rapidly dwindling user base
 Difficult to test due to lack of

support from operating
systems and other frameworks

 Discounted price will be
removed next year; 32 will cost
the same as 64.

Sun is Setting on Classic & 32 Bit

Neither are for sale to new users or supported on new platforms

Tuesday 16:45 Return of Uncle Andy's Fireside Chat
(Uncle Andy)

The Road Ahead – Dyalog'2324

 .NET has been around for 20+ years. The old "Framework" is being replaced
by an open source, cross-platform .NET, initially known as ".NET Core".

 Dyalog v18.0 added a bridge to .NET Core 3, to complement the 20 year old
bridge to the .NET Framework.

 v18.2 officilly supported "Core" 3.1 but works with 5.0 and later
 v19.0 targets 8.0 (Long Term Support version due on Nov 8th 2023)

[Microsoft].NET History

Name Platforms Version Numbers

Microsoft.NET Framework Windows 1 2 3 4.0 4.8.1

".NET Core" Windows Linux macOS 1 2 3

".NET" Windows Linux macOS 5.0 6.0 7.0 8.0

The Road Ahead – Dyalog'2325

 Adds support for .NET 6, 7, 8 …
 Tested with 6.0 & 8.0 - and 4.8 (aka ".NET

Framework")
 Will be shipped configured for 8.0

 Can export APL code as .NET assemblies
 Will allow embedding APL code in .NET

frameworks like ASP.NET Core, etc

v19.0 .NET Bridge

.NET 8.0 will be the
Long Term Support
version on Nov 8th

The Road Ahead – Dyalog'2326

A bound executable is a file which combines an
interpreter and a workspace into a single .exe file

 "Always" been available under Windows

 In v19.0 also available for Linux

 Maybe MacOS soon

 (but you will need to sign the result)

 In the longer term, I expect we will look at
encrypting and signing application code

Bound Executables

The Road Ahead – Dyalog'2327

 System functions ⎕TGET and ⎕TPUT allow threads to
synchronise execution, and pass values to each other using
numbered "tokens".

 New system function ⎕TALLOC allocates token ranges, allowing
independent components to avoid using the same tokens.

 ⎕TALLOC returns a single integer n, granting the right to use
floating-point token ids in the range < n , n+1 >

 NB not including the (integer) end points
 This allows old-style integer tokens to be used by existing

applications without conflicting with new modules

Token Range Reservation

The Road Ahead – Dyalog'2328

 IF a WS FULL leaves VERY little free space,
THEN the interpreter and IDE can malfunction
 For example, a runaway recursion can leave only a few bytes

of free workspace
 Error trapping may not be possible (system might just stop)

 Version 19.0 allocates 1% of MAXWS as a buffer
which is released on WS FULL
 Allows WS FULL traps to be safely processed

 (the reservation size is configurable)

 After successful trap handling, space is re-acquired

WS FULL Handling

The Road Ahead – Dyalog'2329

 Historically, Dyalog APL has re-generated source code from
tokenised code when an editor is opened.
 This does not preserve white space and constants exactly as typed by the

user.

 For several releases, Dyalog APL has preserved source "as
typed" when a function or operator was created using ⎕FIX

2 ⎕FIX 'file://myapp/foo.aplf'

 From version 19.0, the default is to preserve source
as typed within the workspace for *all* fns and ops
 NB: Old behaviour can be selected if desired.

Source "as typed" by default

The Road Ahead – Dyalog'2330

Multi-line input On by Default

The Road Ahead – Dyalog'2331

Use of the HTMLRenderer continues to grow.

New features include:

 ExecuteJavaScript (asynchronous)

 AllowContextMenu

 Get/SetZoomLevel

 IsLoading + LoadEnd event

HTMLRenderer updates

The Road Ahead – Dyalog'2332

HTMLRenderer – what's that?
pic←'https://www.konventum.dk/media/jjcjop23/carousel_damgaard_1135x604.png'
'MyForm' ⎕WC 'HTMLRenderer' ('Hello Dyalog''23!

')

Chromium
Embedded
Framework

(CEF)

The Road Ahead – Dyalog'2333

Bundled with v19.0:

 Link v4.0, with support for simple text vectors, vectors of
text vectors, and character matrices in simple text files,
configuration files, many small features & fixes

 Prototypes of the Cider project manager and the Tatin
package manager client will be bundled with v19.0

Source Code Management
Productivity

& IDE

Link
(source)

Cider
(projects)

Tatin
(packages)Monday 16:45 Using Packages

(Morten Kromberg)

Monday 16:15 Evolution of APLTree and APL-cation
(Kai Jaeger)

The Road Ahead – Dyalog'2334

(… many more of Kai's packages skipped …)

The Road Ahead – Dyalog'2335

(Potentially, at least)

Packages Coming in 2024?

Wednesday 10:00 Statistical Libraries for Dyalog
(Josh David)

Wednesday 09:30 A YAML Parser in APL
(Brandon Wilson, Effective Altruism)

Tuesday 16:45 Dyalog + Kafka = True?
(Stefan Kruger)

Thursday 11:00 Vega Charts with Dyalog
(Rich Park)

The Road Ahead – Dyalog'2336

Experimental TCP-based monitor:

 Regular updates on (for example) :

 CPU consumption

 Memory statistics

 Are any threads suspended?

)SI stack and Error information

 Notification on

 untrapped error

 ws compaction

 Exact execution location if "breadcrumbs" enabled

 Information about whether a RIDE connection is possible

Health Monitor

The Road Ahead – Dyalog'2337

["Facts",
{"Facts": [{
"ID": 2, "Name": "AccountInformation",
"Value": {
"ComputeTime": 438,
"ConnectTime": 46973,
"KeyingTime": 0,
"UserIdentification": 0

}},{
"ID": 3, "Name": "Workspace",
"Value": {
"Allocation": 33882064,
"AllocationHWM": 33882064,
"Available": 2144207480,
"Compactions": 2,
"FreePockets": 186682,
"GarbageCollections": 0,
"GarbagePockets": 0,
"Sediment": 2120,
"Used": 3276168,
"UsedPockets": 23209,
"WSID": "CLEAR WS"

}},{
"ID": 6, "Name": "ThreadCount",
"Value": {
"Suspended": 1,
"Total": 2

}}
],
"Interval": 5000,
"UID": "1 1"
}]

["PollFacts",{"Facts":["AccountInformation","Workspace","ThreadCount"],"Interval":5000,"UID":"1 1"}]

Health Monitor Example

The Road Ahead – Dyalog'2338

Not to be forgotten:
 We closed a LOT of "issues"

 Tricky dfn scoping issues were fixed \☺/
 Significant contribution from new team members

 Unfortunately the list of open issues is growing
 …mostly because we're doing more, better testing
 New users with new usage patterns
 New employees finding bugs & logging "WIBNIs*"

Highlights of v19.0
*

Wouldn't
It
Be
Nice
If …

The Road Ahead – Dyalog'2339

Transferred from v19.0
 Resume Optimisation Work
 .NET Bridge "enhancements"

 Support "Generic" methods & classes

 More HTMLRenderer improvements
 Work on open-sourcing it

 Health Monitor
 Script Engine Support
 ⎕NATTRIBUTES

Next Set of Projects
 Array Notation
 Token-by-token Debugging
 Probably some New Operators
 Query Platform Features
 New "Shell" System Command
 Virtual "Execution Environments"
 Design / Prototyping of Async

Sketch of Version 20.0 (Q2/2024)

The Road Ahead – Dyalog'2340

https://aplwiki.com/wiki/Array_notationArray Notation

https://aplwiki.com/wiki/Array_notation

The Road Ahead – Dyalog'2341

 Proposal published – awaiting community feedback
 https://aplwiki.com/wiki/Array_notation

 APL model exists in Link and
⎕SE.Dyalog.Array.Serialise|Deserialise

 Hope to start C implementation in v20.0

Array Notation

Thursday 10:00 An Implementation of APL Array Notation
(Kamila Szewczyk, Saarland University - Dyalog Summer Intern)

https://aplwiki.com/wiki/Array_notation

The Road Ahead – Dyalog'2342

 Critical for adoption of APL by new generation of users

 Independent from v20.0 projects, but in same timeframe:
 Project Management - Cider

 Package Management - Tatin

 Link 5.0 with a "Crawler" as backup / alternative to File System Watcher

 Voice opinions to Gilgamesh Athoraya, Kai Jaeger, Rich Park,
Stefan Kruger, or myself.

Source Code Management

The Road Ahead – Dyalog'2343

 Closely related to Projects & Packages

 A virtual environment defines
 A specific version of Dyalog APL

 With a set of installed packages

 And a set of environment variables

 Allows development or maintenence of
applications in controlled / static settings

Virtual Environments

The Road Ahead – Dyalog'2344

 Initial focus on performance of ∊ and ⍳

 Instrumented interpreter can collect data about
calls made by running applications

 In version 20.0, we hope to implement the first
improved algorithms

Optimisation Work

Monday 14:00 Performance of Set Functions
(Karta Kooner)

The Road Ahead – Dyalog'2345

 Medium term: Separate HTMLRenderer from APL and make
it a separate, open source component
 Not sure this will make it to v20.0

 Until then, we may release regular updates to the
HTMLRenderer to pick up new versions of CEF
 When there are critical security patches to Chromium

 These releases may contain feature tweaks
 File Upload, Multiple Modal instances

HTMLRenderer Enhancements

The Road Ahead – Dyalog'2346

 Continue the move towards portable configuration files

 Currently require a startup script on non-Windows platforms
 Implement Good defaults for all settings under Linux, macOS, …

 All settings configurable via text config files

 Eliminate the need for the script

 Remove need for the Windows Registry
 Windows interpreter already has good defaults if no config found

 Move all "interpreter settings" to text (JSON5) config files

 Leave IDE settings in the Registry (as RIDE settings are in a JSON
repository)

This might not make 19.0 20.0, but remains an important medium term
goal.

Configuration Files

The Road Ahead – Dyalog'2347

 The v19.0 bridge to "New .NET" is roughly on
par with the Framework bridge

 Potential new features in v20.0
 Generics
 Delegates
 (Tools to load/manage .NET dependencies)

 NB: New features will probably NOT be back-
ported to the Framework bridge

.NET Bridge Enhancements

Tuesday 15:15 Dyalog Version 20.0 – Part 2
(John Daintree)

The Road Ahead – Dyalog'2348

 Not saying any more, John is up next

Token-by-token Debugging

Monday 10:15 Dyalog Version 20.0 – Part 1
(John Daintree)

The Road Ahead – Dyalog'2349

 A small set of APL primitives is still missing

 See Adam's presentation at Dyalog'22
 D15: Filling the Core Language Gaps

 And later today:

New Primitives / System Functions

Monday 11:15 Setting and Getting Variable Values
(Adám Brudzewsky)

Tuesday 16:15 Giving Key a Vocabulary
(Adám Brudzewsky)

The Road Ahead – Dyalog'2350

Possible New Primitives

The Road Ahead – Dyalog'2351

 Work on the .NET bridge makes it clear to us
that modern APIs are often asynchronous

 A future .NET Bridge needs to support this
elegantly – see John Daintree's "2022
Conference Edition Part 3" talk from
Dyalog'22
 Async … Await

 And/or Futures

Design / Prototyping of "Async"

The Road Ahead – Dyalog'2352

Grand Unified Theory of Async?
A dyadic parallel operator could invoke a function
in a variety of asynchronous ways, all of which would
immediately return a future:

Invoke foo in…

ns∥foo ←→ an "in process" fork of the ns

isolates∥foo ←→ a "separate process" (isolate)

 ⍬∥foo ←→ an empty isolate (current APL model)

0∥foo ←→ a green thread in current ws (like current foo&)

¯1∥foo ←→ current ws, but lazily (when value is required)

The Road Ahead – Dyalog'2353

Version 19.0 contains a prototype. Ideas for v20.0
include:
 Complete implementation of "breadcrumbs" so

it is possible to understand where an
interpreter is hanging

 Sending signals to interrupt or terminate tasks
 Discoverability: allow APL process to broadcast

services that it provides
 Switch PROFILE on and off; collect data

Health Monitor

The Road Ahead – Dyalog'2354

 I/O routines significantly refactored in v19.0
 Goal is to properly manage redirection in the future
 Changes should be invisible to users

 In v20.0, we aim to add
 The ability to change redirection under program control
 Ability to attach RIDE to a "script engine" and manage where

programme and user input come from during debugging

I/O Project

The Road Ahead – Dyalog'2355

 #! (hash bang) scripting

 We think the script engine will
be critical for attracting new users

 Still a bit of a prototype
 Needs to be debug-able via RIDE

 (awaiting next phase of I/O project)

Script-Engine Support

The Road Ahead – Dyalog'2356

 ⎕SHELL to replace existing ⎕SH
 Interruptible

 Manage stdin, stdout & stderr

 ⎕PROFILE enhancements
 Ideas: capture thread id, non-aggregating mode, memory

allocations, binary export format

Other Small but Important Things
Monday 11:45 Revisiting ⎕SH and ⎕CMD
(Peter Mikkelsen)

The Road Ahead – Dyalog'2357

Transferred from v19.0
 Resume Optimisation Work
 .NET Bridge "enhancements"

 Support "Generic" methods & classes

 More HTMLRenderer improvements
 Work on open-sourcing it

 Health Monitor
 Script Engine Support
 ⎕NATTRIBUTES

Next Set of Projects
 Array Notation
 Token-by-token Debugging
 Probably some New Operators
 Query Platform Features
 New "Shell" System Command
 Virtual "Execution Environments"
 Design / Prototyping of Async

Sketch of Version 20.0 (Q2/2024)

The Road Ahead – Dyalog'2358

Major Milestones in 1st Half of the Fifth Decade
 2024 / Tool Projects

 Tatin & Cider become "mainstream"
 Jarvis & WebSocket integration
 One secret project, come to Glasgow ☺!

 2025 / v20:
 Literal Array Notation
 .NET Generics
 HTMLRenderer (& Conga?) as Open-Source

extensions
 Android version?

 2026 / v21:
 Co-dfns compiler integrated with Dyalog APL
 All asynchronous operations return futures
 Dual / Under, Differentiation

 2027 / v22:
 Multiple Numeric Towers: 64-bit integers,

Rationals, Unlimited-precision integers

(NB Mortens dreams, NOT promises!)

And… without dates attached

 Universities start offering APL courses
 Not as part of a "comparative" course

 APL recognised as a respectable tool for
modeling machine learning and quantum
computing

 First commercially significant APL application
created by someone who learned APL in this
millennium

 "Full Stack" Web development in APL

And… not forgotten

 VS Code Integration (Debug Adapter Protocol)

 Inverted Tables (aka "Magic Arrays")

 WASM?

The Road Ahead – Dyalog'2359

Hope that was all clear!

	Slide 0: D02 - The Road Ahead
	Slide 1
	Slide 2: Geoff has Retired (!)
	Slide 3: 40 years in pursuit of excellence
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Dyalog … The Next Generation
	Slide 9: Dyalog … The Next Generation
	Slide 10: Academic Collaboration
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Why v19.0 is Late…
	Slide 15: Highlights Version 19.0
	Slide 16: Service Orientation
	Slide 17: Service Orientation
	Slide 18: Arm64
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Dyalog APL for ARM-based Macs
	Slide 23: Sun is Setting on Classic & 32 Bit
	Slide 24: [Microsoft].NET History
	Slide 25: v19.0 .NET Bridge
	Slide 26: Bound Executables
	Slide 27: Token Range Reservation
	Slide 28: WS FULL Handling
	Slide 29: Source "as typed" by default
	Slide 30: Multi-line input On by Default
	Slide 31: HTMLRenderer updates
	Slide 32: HTMLRenderer – what's that?
	Slide 33: Source Code Management
	Slide 34
	Slide 35: Packages Coming in 2024?
	Slide 36: Health Monitor
	Slide 37
	Slide 38: Highlights of v19.0
	Slide 39: Sketch of Version 20.0 (Q2/2024)
	Slide 40: Array Notation
	Slide 41: Array Notation
	Slide 42: Source Code Management
	Slide 43: Virtual Environments
	Slide 44: Optimisation Work
	Slide 45: HTMLRenderer Enhancements
	Slide 46: Configuration Files
	Slide 47: .NET Bridge Enhancements
	Slide 48: Token-by-token Debugging
	Slide 49: New Primitives / System Functions
	Slide 50: Possible New Primitives
	Slide 51: Design / Prototyping of "Async"
	Slide 52: Grand Unified Theory of Async?
	Slide 53: Health Monitor
	Slide 54: I/O Project
	Slide 55: Script-Engine Support
	Slide 56: Other Small but Important Things
	Slide 57: Sketch of Version 20.0 (Q2/2024)
	Slide 58
	Slide 59

