
Elsinore 2023

Revisiting ⎕SH and ⎕CMD

Peter Mikkelsen

Revisiting ⎕SH and ⎕CMD1

Or: revisiting the way we run shell commands
Monadic ⎕SH and ⎕CMD are old and might work just fine for you

There are no plans of changing or removing them

But they are not without issues
Explore what can be done better

Proposal for a new system function that fixes the issues

If all goes well, we are aiming for 20.0

Revisiting monadic ⎕SH and ⎕CMD

Revisiting ⎕SH and ⎕CMD2

Used to run an external program or shell command
Mount a network drive, run test scripts, git status…

Two main outcomes
Side effects

Output, collected as an APL array (text)

What is ⎕SH used for

Example – files containing a word

Revisiting ⎕SH and ⎕CMD3

⎕SH 'grep example *.c'
a.c:/* The following example shows
a.c:example_mode = 0;
b.c:if(example_mode)

Output is printed to the session
Looks like the result of ⎕SH is a matrix

Fine for interactive use – slow output printed as it is produced

Example – files containing a word

Revisiting ⎕SH and ⎕CMD4

x←⎕SH 'grep example *.c'
 ⍴x
3
 ↑x
a.c:/* The following example shows
a.c:int example_mode = 0;
b.c:if(example_mode)

Example – files containing a word

Revisiting ⎕SH and ⎕CMD5

⎕SH'grep axample *.c' ⍝ No output
 x←⎕SH'grep axample *.c'
DOMAIN ERROR: Command interpreter returned
failure code 1
 x←⎕SH'grep axample *.c'
 ∧

Exit code is checked, but only when the result is used

Example – files containing a word

Revisiting ⎕SH and ⎕CMD6

x←⎕SH'cat file1 file2'

DOMAIN ERROR: …

file1 exists and is printed to standard output

file2 doesn’t exist
An error message is produced on standard error

Wouldn’t it be nice to know about that

Example – content of files

Revisiting ⎕SH and ⎕CMD7

Limitations of the current ⎕SH

How can I control input?

What happens to error output?

What about slow commands?

What about output before an error?

What if the output isn’t text at all?

What about environment variables?

Revisiting ⎕SH and ⎕CMD8

Right now, only standard output is collected
Standard error is very often useful. It isn’t only used for errors.

In a normal shell, stdout and stderr both go to the window
The interleaving is done by the operating system

Hard to tell the two apart by default

Having the two as separate parts of the result might be useful

What happens to error output?

Revisiting ⎕SH and ⎕CMD9

Limitations of the current ⎕SH

How can I control input?

What happens to error output?

What about slow commands?

What about output before an error?

What if the output isn’t text at all?

What about environment variables?

Revisiting ⎕SH and ⎕CMD10

Some programs expect to be able to read data from standard
input

Usually, the lines of text typed at a terminal window

Unix tools often read on stdin and write to stdout
Example: echo hello | tr a-z A-Z

Would be nice if we could specify the input from the APL side

Other times, no input at all is needed

How can I control input?

Revisiting ⎕SH and ⎕CMD11

Limitations of the current ⎕SH

How can I control input?

What happens to error output?

What about slow commands?

What about output before an error?

What if the output isn’t text at all?

What about environment variables?

Revisiting ⎕SH and ⎕CMD12

⎕SH can be hard to stop once it is running
Issues interrupting it from RIDE

If ⎕SH is interrupted, what happens to the program?

It blocks the rest of the APL threads
⎕SH&'update-system' ⋄ ⎕←'zzz'

Being a thread-switch point makes slow commands easier
to deal with. ⎕TKILL to stop it.

What about slow commands?

Revisiting ⎕SH and ⎕CMD13

Limitations of the current ⎕SH

How can I control input?

What happens to error output?

What about slow commands?

What about output before an error?

What if the output isn’t text at all?

What about environment variables?

Revisiting ⎕SH and ⎕CMD14

Exit codes are used to indicate success/failure
By convention 0 means success

Giving a DOMAIN ERROR prevents the user from having to check

However, DOMAIN ERROR might be a bad idea
Some programs return non-zero even when they succeed

All output so far is completely lost

Figuring out what went wrong becomes a challenge

What about output before an error?

Revisiting ⎕SH and ⎕CMD15

Limitations of the current ⎕SH

How can I control input?

What happens to error output?

What about slow commands?

What about output before an error?

What if the output isn’t text at all?

What about environment variables?

Revisiting ⎕SH and ⎕CMD16

We are used to working with text in the shell

Some commands might output non-text data
cat hello.png

Letting the user choose which APL type to interpret it as could be
helpful

Similarly, ⎕NREAD also doesn’t always read data as text

The same is of course true for input to the program

What if the output isn’t text at all?

Revisiting ⎕SH and ⎕CMD17

Limitations of the current ⎕SH

How can I control input?

What happens to error output?

What about slow commands?

What about output before an error?

What if the output isn’t text at all?

What about environment variables?

Revisiting ⎕SH and ⎕CMD18

Environment variables is one of the major ways of passing data
to a child program

Standard input and program arguments two other ways

The interpreter already has a set of variables
They can be inherited or cleared

Custom environment variables for each invocation

What about environment
variables?

Revisiting ⎕SH and ⎕CMD19

Limitations of the current ⎕SH

How can I control input?

What happens to error output?

What about slow commands?

What about output before an error?

What if the output isn’t text at all?

What about environment variables?

Revisiting ⎕SH and ⎕CMD20

(Exit Ids Content)←⎕SHELL cmd

Exit: The exit code of the program

Ids: A vector of collected stream ids

Contents: A vector of content collected
One element for each stream

Standard output (stream 1) becomes: (Ids⍳1)⊃Contents

A new system function - ⎕SHELL

Revisiting ⎕SH and ⎕CMD21

The command cmd can be specified in two ways

Character vector: evaluated using the system shell
Easy to use shell features, such as pipelines

Nested character vector: program arg1 arg2 …
No need to worry about the specific shell, and its argument quoting rules

'rm "file name"' vs 'rm' 'file name'

⎕SHELL cmd

Revisiting ⎕SH and ⎕CMD22

⍠'ExitCheck' bool

⍠'InheritEnv' bool

⍠'WorkingDir' path

⍠'Window' winparam

Same as with ⎕CMD

⍠'Shell' shellSpec

'CMD.EXE' '/C'

'/bin/sh' '-c'

⍠'Env' environment

⍠'Redirect' redirs

Details on the next 2 slides

Control via variant options

Revisiting ⎕SH and ⎕CMD23

A n-by-2 matrix of extra environment variables
Or a vector, which is treated as a 1 row matrix

Each row consists of two character-vectors: ('Name' 'Val')

Variables are added only in the child process
Not even temporarily in the parent process (the interpreter)

If it is already set, the new value overwrites the old

Environment variables - ⍠'Env'

Revisiting ⎕SH and ⎕CMD24

A n-by-3 matrix of redirections that should be setup
Or a vector, which is treated as a 1 row matrix

Each row is a redirection: (Stream Mode X)

Changes what the program ”sees” for Stream

Mode is either 'From' or 'To'

X is a source or a target, depending on Mode

Redirections - ⍠'Redirect'

Revisiting ⎕SH and ⎕CMD25

'Null' – completely discard the output

('File' tie) – Send the output to some native file

('Stream' n) – Send the output to another stream
Useful to redirect standard error to standard output

'Array' – Collect the output as an array (vector of lines)

('Array' type) – Output as a vector of some type
Collect as boolean with (N 'To' ('Array' 11))

Redirection targets (mode 'To')

Revisiting ⎕SH and ⎕CMD26

'Null' – completely discard the output

('File' tie) – Send the output to some native file

('Stream' n) – Send the output to another stream
Useful to redirect standard error to standard output

'Array' – Collect the output as an array (vector of lines)

('Array' type) – Output as a vector of some type
Collect as boolean with (N 'To' ('Array' 11))

Redirection targets (mode 'To')• As if the output was redirected to a file,
and then read using ⎕NGET

• The encoding is guessed based on content

• Should it be possible to specify it?

 ('Array' 'UTF-8')

• As if the output was redirected to a file,
and then read using ⎕NGET

• The encoding is guessed based on content

• Should it be possible to specify it?

 ('Array' 'UTF-8')

Revisiting ⎕SH and ⎕CMD27

'Null' – Provide no input at all

('File' tie) – Connect the file as input

('Array' type data) – Use the data array as input

('Array' data)

An alias for ('Array' (⎕DR data) data)

To use a character vector X as stdin: (0 'From' ('Array' X))

Redirection sources (mode 'From')

Revisiting ⎕SH and ⎕CMD28

⎕SHELL always sets up defaults for the three
standard streams
┌─┬────┬──────────┐
│0│From│Null │
├─┼────┼──────────┤
│1│To │Array │
├─┼────┼──────────┤
│2│To │┌──────┬─┐│
│ │ ││Stream│1││
│ │ │└──────┴─┘│
└─┴────┴──────────┘

Default redirections

Revisiting ⎕SH and ⎕CMD29

x←⎕SH'cat file1 file2'

DOMAIN ERROR: …

file1 exists and is printed to standard output

file2 doesn’t exist
An error message is produced on standard error

Wouldn’t it be nice to know about that

Example – content of files

Revisiting ⎕SH and ⎕CMD30

⎕SHELL'cat file1 file2'
┌─┬─┬───┐
│1│1│┌───┐│
│ │ ││┌────┬────┬─────────────────────────────────────┐││
│ │ │││Some│Text│cat: file2: No such file or directory│││
│ │ ││└────┴────┴─────────────────────────────────────┘││
│ │ │└───┘│
└─┴─┴───┘

Now we can see what is going on

Example – content of files

Revisiting ⎕SH and ⎕CMD31

s←⎕SHELL⍠'Redirect' (2 'To' 'Array')
 (exit ids contents)←s 'cat file1 file2'
 exit
1
 ↑¨contents[ids⍳1 2] ⍝ matrix stdout and stderr
┌────┬─────────────────────────────────────┐
│Some│cat: file2: No such file or directory│
│Text│ │
└────┴─────────────────────────────────────┘

Example – content of files

Revisiting ⎕SH and ⎕CMD32

Note: I am not suggesting this is a good way to uppercase

 x←'hello dyalog 23'

 s←⎕SHELL⍠'Redirect' (0 'From' ('Array' x))

 ↑3 1⊃s'tr a-z A-Z'

HELLO DYALOG 23

Example – translate to uppercase

Revisiting ⎕SH and ⎕CMD33

There are many things that could be improved about ⎕SH
Impossible to extend it without introducing breaking changes

The current monadic ⎕SH/⎕CMD isn’t going away

⎕SHELL allows for much finer control of input/output
At the slight cost of a more complicated result value

Hopefully will be a part of version 20.0

Thank you for listening ☺

Conclusion

	Slide 0: Revisiting ⎕SH and ⎕CMD
	Slide 1: Revisiting monadic ⎕SH and ⎕CMD
	Slide 2: What is ⎕SH used for
	Slide 3: Example – files containing a word
	Slide 4: Example – files containing a word
	Slide 5: Example – files containing a word
	Slide 6: Example – content of files
	Slide 7: Limitations of the current ⎕SH
	Slide 8: What happens to error output?
	Slide 9: Limitations of the current ⎕SH
	Slide 10: How can I control input?
	Slide 11: Limitations of the current ⎕SH
	Slide 12: What about slow commands?
	Slide 13: Limitations of the current ⎕SH
	Slide 14: What about output before an error?
	Slide 15: Limitations of the current ⎕SH
	Slide 16: What if the output isn’t text at all?
	Slide 17: Limitations of the current ⎕SH
	Slide 18: What about environment variables?
	Slide 19: Limitations of the current ⎕SH
	Slide 20: A new system function - ⎕SHELL
	Slide 21: ⎕SHELL cmd
	Slide 22: Control via variant options
	Slide 23: Environment variables - ⍠'Env'
	Slide 24: Redirections - ⍠'Redirect'
	Slide 25: Redirection targets (mode 'To')
	Slide 26: Redirection targets (mode 'To')
	Slide 27: Redirection sources (mode 'From')
	Slide 28: Default redirections
	Slide 29: Example – content of files
	Slide 30: Example – content of files
	Slide 31: Example – content of files
	Slide 32: Example – translate to uppercase
	Slide 33: Conclusion

