
Elsinore 2023

An introduction to the
workspace

Richard Smith

An introduction to the workspace1

 A look at what goes inside a workspace
 A look at how the workspace is managed
 Why?

 You’ve asked for “how it works” presentations

 It really affects performance

 We’ve made it fast, but sometimes tuning can
help further

Coming up …

An introduction to the workspace

What you are about to see is based on the way Dyalog APL
actually works.

Some dramatic licence has been taken and sequences have
been shortened for simplicity.

An introduction to the workspace

The workspace
A big contiguous block of memory which the
interpreter asks the OS to allocate.

An introduction to the workspace

The workspace
The interpreter manages what is in it.

An introduction to the workspace

The workspace
The interpreter tries to keep the workspace
small.

An introduction to the workspace

The workspace
The workspace shrinks and grows from time
to time, but never gets bigger than MAXWS.

An introduction to the workspace

Workspace allocation

The interpreter reserves MAXWS bytes in the
computer’s address space to keep the range free.

But it initially only allocates a fraction of that.

addr+MAXWS

Reserved

addr
Actual workspace

An introduction to the workspace

Pretty much everything:

 Arrays.

 Symbols (names).

 Functions.

 The APL stack.

 … etc.

All of these things are made up of .

What goes into the workspace?

Pockets

An introduction to the workspace

In the allocated part of the workspace there are:
 FREE POCKETS.
 ALLOCATED POCKETS.
… and there lots of types of allocated pocket – but more on that later.

Pockets

An introduction to the workspace

Starting at the pocket after the previous allocation:

 If it is free and big enough: allocate at that point, and anything
left over becomes a new free pocket.

 Otherwise: skip to the next pocket and try again.

Next time, restart from the next pocket.

Pocket allocation algorithm

An introduction to the workspace

Starting at the pocket after the previous allocation:

 If it is free and big enough: allocate at that point, and anything
left over becomes a new free pocket.

 Otherwise: skip to the next pocket and try again.

Next time, restart from the next pocket.

Pocket allocation algorithm

An introduction to the workspace

Starting at the pocket after the previous allocation:

 If it is free and big enough: allocate at that point, and anything
left over becomes a new free pocket.

 Otherwise: skip to the next pocket and try again.

Next time, restart from the next pocket.

Pocket allocation algorithm

An introduction to the workspace

Pocket allocation (and deallocation)

An introduction to the workspace

Pocket allocation (and deallocation)

An introduction to the workspace

Pocket allocation (and deallocation)

An introduction to the workspace

Pocket allocation (and deallocation)

An introduction to the workspace

Pocket allocation (and deallocation)

An introduction to the workspace

Pocket allocation (and deallocation)

An introduction to the workspace

Pocket allocation (and deallocation)

An introduction to the workspace

Pocket allocation (and deallocation)

An introduction to the workspace

Pocket allocation (and deallocation)

An introduction to the workspace

Pocket allocation (and deallocation)

An introduction to the workspace

Pocket allocation (and deallocation)

An introduction to the workspace

Pocket allocation (and deallocation)

An introduction to the workspace

Pocket allocation (and deallocation)

An introduction to the workspace

Pocket allocation (and deallocation)

An introduction to the workspace

Pocket allocation (and deallocation)

An introduction to the workspace

Next allocation request

An introduction to the workspace

Pocket allocation (and deallocation)

Too small!

An introduction to the workspace

Pocket allocation (and deallocation)

Allocated!

An introduction to the workspace

Pocket allocation (and deallocation)

Allocated!

An introduction to the workspace

Pocket allocation (and deallocation)

Will fit!!

An introduction to the workspace

Pocket allocation (and deallocation)

An introduction to the workspace

Next allocation request

An introduction to the workspace

Pocket allocation (and deallocation)

Too small!

An introduction to the workspace

Pocket allocation (and deallocation)

Allocated!

An introduction to the workspace

Pocket allocation (and deallocation)

Too small!

An introduction to the workspace

Pocket allocation (and deallocation)

Allocated!

An introduction to the workspace

Pocket allocation (and deallocation)

Allocated!

An introduction to the workspace

Pocket allocation (and deallocation)

Too small!

An introduction to the workspace

Pocket allocation (and deallocation)

Allocated!

An introduction to the workspace

Pocket allocation (and deallocation)

Allocated!

An introduction to the workspace

Pocket allocation (and deallocation)

Allocated!

An introduction to the workspace

Pocket allocation (and deallocation)

Too small!

An introduction to the workspace

Pocket allocation (and deallocation)

Allocated!

An introduction to the workspace

Pocket allocation (and deallocation)

Allocated!

An introduction to the workspace

Pocket allocation (and deallocation)

Allocated!

An introduction to the workspace

Pocket allocation (and deallocation)

Back at start

Space could not be allocated.

Not necessarily a WSFULL… we’ll see what happens next later.

An introduction to the workspace

A look inside some pockets

An introduction to the workspace

Free pockets

An introduction to the workspace

Free pockets

Unused contentL

An introduction to the workspace

Allocated pockets

An introduction to the workspace

Allocated pockets

PayloadL R Z

An introduction to the workspace

Allocated pockets

Z

An introduction to the workspace

Allocated pockets

Z

1 word long (64-bits).

Includes the main pocket type.

There are 15 major pocket types in all.

T

An introduction to the workspace

Arrays

An introduction to the workspace

A simple array

PayloadL R Z

An introduction to the workspace

A simple array - ⍳8

L R Z

Simple array pocket type.

Rank 1.

8-bit integers.

NB – array contains:
1 2 3 4 5 6 7 8

An introduction to the workspace

A simple array - ⍳8

L R Z

Shape 8.

8

An introduction to the workspace

A simple array - ⍳8

1 2 3 4 5 6 7 8

8 × 8 bits = 1 word

An introduction to the workspace

A simple array - ⍳8

L R Z 8
1
2
3
4
5
6
7
8

An introduction to the workspace

A simple array

PayloadL R Z

An introduction to the workspace

A simple array –(⍳7),100000

L R Z

Simple array pocket type.

Rank 1.

32-bit integers.

An introduction to the workspace

A simple array –(⍳7),100000

L R Z

Shape 8.

8

An introduction to the workspace

A simple array –(⍳7),100000

L R Z 8

Each element is now 32-bit, rather than 8-bit before.

8 x 32 bits = 4 words.

1
2

3
4

5
6

7
100000

An introduction to the workspace

A non-simple array: multiple pockets

PayloadL R Z PayloadL R Z

PayloadL R Z PayloadL R Z

PayloadL R Z PayloadL R Z

An introduction to the workspace

(⍳8)((⍳7),100000)

L R Z 8
1
2
3
4
5
6
7
8

L R Z

L R Z 8 1
2

3
4

5
6

7
100000

“Non-simple” array pocket type.

An introduction to the workspace

(⍳8)((⍳7),100000)

L R Z 8
1
2
3
4
5
6
7
8

L R Z

L R Z 8 1
2

3
4

5
6

7
100000

Rank 1.

An introduction to the workspace

(⍳8)((⍳7),100000)

L R Z 8
1
2
3
4
5
6
7
8

L R Z 2 P P

L R Z 8 1
2

3
4

5
6

7
100000

An introduction to the workspace

Other pocket types

An introduction to the workspace

R

L R Z 8
1
2
3
4
5
6
7
8

L Z 2 P P

L R Z P ‘a’…

Symbols

L R Z 8 1
2

3
4

5
6

7
100000

An introduction to the workspace

R

L R Z 8
1
2
3
4
5
6
7
8

L Z 2 P P

○ ‘a’

Symbols

L R Z 8 1
2

3
4

5
6

7
100000

An introduction to the workspace

b

Code

L R Z … ○

AR
RO

W

○
PL

U
S

○

/ ‘tot’

/ ‘a’

/ ‘b’

tot ← a +

An introduction to the workspace

r←f;a

 a←(1 2)(3 4)

 r←+/¨a

Stack

An introduction to the workspace

r←f;a

 a←(1 2)(3 4)

 r←+/¨a

Stack

L R Z P …

L R Z P …

Function “Mode” frame

“Shadow” block

An introduction to the workspace

r←f;a

 a←(1 2)(3 4)

 r←+/¨a

Stack

L R Z P …

L R Z P …

EachL R Z P …

Function “Mode” frame

“Shadow” block

L R Z P … +/

An introduction to the workspace

r←f;a

 a←(1 2)(3 4)

 r←+/¨a

Stack

L R Z P …

L R Z P …

Function “Mode” frame

“Shadow” block

An introduction to the workspace

r←f;a

 a←(1 2)(3 4)

 r←+/¨a

Stack

An introduction to the workspace

Reference counts

An introduction to the workspace

1

L 1 Z 8
1
2
3
4
5
6
7
8

L Z 2 P P

○ ‘a’

L 1 Z 8 1
2

3
4

5
6

7
100000

a←(⍳8)((⍳7),100000)

/ ‘b’

An introduction to the workspace

2

L 1 Z 8
1
2
3
4
5
6
7
8

L Z 2 P P

○ ‘a’

b←a

L 1 Z 8 1
2

3
4

5
6

7
100000

○ ‘b’

An introduction to the workspace

1

L 1 Z 8
1
2
3
4
5
6
7
8

L Z 2 P P

⎕EX'a'

L 1 Z 8 1
2

3
4

5
6

7
100000

○ ‘b’ / ‘a’

An introduction to the workspace

0

L 1 Z 8
1
2
3
4
5
6
7
8

L Z 2 P P

⎕EX'b'

L 1 Z 8 1
2

3
4

5
6

7
100000

/ ‘a’/ ‘b’

An introduction to the workspace

00L Z 8
1
2
3
4
5
6
7
8

⎕EX'b'

L Z 8 1
2

3
4

5
6

7
100000

/ ‘a’/ ‘b’

An introduction to the workspace

⎕EX'b'

/ ‘a’/ ‘b’

An introduction to the workspace

1

2

a←2/⊂⍳8

L Z 8
1
2
3
4
5
6
7
8

L Z 2 P P

‘a’○

An introduction to the workspace63

 Save space.

 Make assignment fast.

APL without them would be impractical.

Refcounts

An introduction to the workspace

r←f

r←1+

 Pockets with high refcounts cannot be
modified.

Refcounts vs optimisations

⍳100
a

a←
;a

L R Z 100

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32

33
34
35
36
37
38
39
40

41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56

57
58
59
60
61
62
63
64

65
66
67
68
69
70
71
72

73
75
75
76
77
78
79
80

81
82
83
84
85
86
87
88

89
90
91
92
93
94
95
96

97
98
99

100
-
-
-
-

○ ‘a’

An introduction to the workspace

r←f

r←1+

 Pockets with high refcounts cannot be
modified.

Refcounts vs optimisations

⍳100
a

a←
;a

L R Z
1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32

33
34
35
36
37
38
39
40

41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56

57
58
59
60
61
62
63
64

65
66
67
68
69
70
71
72

73
75
75
76
77
78
79
80

81
82
83
84
85
86
87
88

89
90
91
92
93
94
95
96

97
98
99

100
-
-
-
-

○ ‘a’

L R Z
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49

50
51
52
53
54
55
56
57

58
59
60
61
62
63
64
65

66
67
68
69
70
71
72
73

74
75
76
77
78
79
80
81

82
83
84
85
86
87
88
89

90
91
92
93
94
95
96
97

98
99

100
101

-
-
-
-

100

100

○ ‘r’

An introduction to the workspace65

98
99

100
101

-
-
-
-

90
91
92
93
94
95
96
97

82
83
84
85
86
87
88
89

74
75
76
77
78
79
80
81

66
67
68
69
70
71
72
73

58
59
60
61
62
63
64
65

50
51
52
53
54
55
56
57

42
43
44
45
46
47
48
49

34
35
36
37
38
39
40
41

26
27
28
29
30
31
32
33

18
19
20
21
22
23
24
25

10
11
12
13
14
15
16
17

2
3
4
5
6
7
8
9

r←f

r←1+

 Pockets with low refcounts can be modified.

Refcounts vs optimisations

⍳100

;a

L R Z 100

○ ‘r’

 20% faster!

 Only possible when refcount is low!

An introduction to the workspace67

 Garbage occurs when there are
“reference loops”
 The only thing that references the pockets in

the loop is the pockets in the loop

 Traditional APL does not create garbage
but OO features can.

 Why, and how it is removed, is a whole
other presentation!

Garbage

An introduction to the workspace

Back at start

Pocket allocation (and deallocation)

Space could not be allocated.

Not necessarily a WSFULL… we’ll see what happens next later.

An introduction to the workspace

Back at start

Pocket compression (“squeeze”)

An introduction to the workspace

Pocket compression

An introduction to the workspace

1 2 3 4 84 2

Pocket compression

L R Z

Simple array.

Rank 1.

64-bit doubles.

33 1 2 1 8 9 3 3 8 3 2 2 5 3 2 5 6 5 2 1 3 4 5 3 2 3 1

An introduction to the workspace

Pocket compression

Simple array.

Rank 1.

8-bit ints.

1
2
1
8
9
3
3
8

3
2
2
5
4
1
2
3

4
8
2
3
2
5
6
5

2
1
3
4
5
3
2
3

1
-
-
-
-
-
-
-

L R Z 33

An introduction to the workspace

Pocket compression

An introduction to the workspace

Pocket compression

An introduction to the workspace

Workspace compaction

An introduction to the workspace

Workspace compaction

An introduction to the workspace

The allocation request

An introduction to the workspace

Pocket allocation (and deallocation)

An introduction to the workspace

Pocket allocation (and deallocation)

An introduction to the workspace

Pocket allocation (and deallocation)

An introduction to the workspace

Pocket allocation (and deallocation)

An introduction to the workspace

Next allocation request

An introduction to the workspace

Walk workspace

An introduction to the workspace

Walk workspace

An introduction to the workspace

Walk workspace

An introduction to the workspace

Walk workspace

An introduction to the workspace

Walk workspace

An introduction to the workspace

Walk workspace

An introduction to the workspace

Walk workspace

An introduction to the workspace

Walk workspace

No room.

An introduction to the workspace

Compress and compact

An introduction to the workspace

Compress and compact

Still no room.

An introduction to the workspace

Worspace expansion

An introduction to the workspace

Worspace expansion

An introduction to the workspace

Worspace expansion

An introduction to the workspace

Incredibly simple.

Very fast.

Every new interpreter developer thinks they
can improve it.

No-one has so far.

In 18.0 we almost did…

Pocket allocation algorithm

An introduction to the workspace

 ⎕WA

 Performs compression and compaction.

 Resets to an “ideal” memory allocation.

Reducing workspace allocation

An introduction to the workspace

2000⌶

 Number of free and allocated pockets.
 Number of compactions.
 Sediment size.
 Current allocation and allocation HWM.
 Set min/max allocation sizes.
 ⎕WA without compaction etc.

Useful tools

An introduction to the workspace

2002⌶

 ⎕WA which allows the WS allocation to
be specified.

Useful tools

An introduction to the workspace

Why 2000⌶ ?

An introduction to the workspace

MM

Introductio ad opus spatium

Quid MM⌶ ?

⌶

An introduction to the workspace

EMORYM MANAGER

Introductio ad opus spatium

Quid MM⌶ ?

An introduction to the workspace

 Everything in it is a pocket.

 Pockets are refcounted.

 Pockets are allocated using a “rotating first fit” algorithm.

 Workspace is compressed and compacted only when space cannot be
allocated.

 The workspace allocation increases only when compression and
compaction don’t help.

 You can monitor when this happens and have some control over it.

The workspace

An introduction to the workspace

Questions?

