
Co-dfns 
Report

Dyalog ‘23 – Aaron Hsu – aaron@dyalog.com



Agenda
Lots of new people are here, so let’s set the stage…



Table of 
contents

What is Co-dfns?

What

Why
Primary goals of the project

01

02

Status
Progress report and update

How
A short primer to get started

03

04



Why

01

What are the goals of 
the project?



Problem

How do we expand the capabilities of APL so that it can be 
used by more people in more places for more problems?



Performance
Make APL faster for more 
problem domains

Tackle hard problems 
using APL

Research

Integration
Make APL easier to 
integrate into your stack

Education
How can people learn to 
use APL in more ways?

Solutions?



Some history

2015
Is a self-hosting GPU 

compiler even possible? 

2010

Is APL even a viable 

language anymore?



Some history

2020
APL is cool, but is it fast? 

2022

How do I use this Co-dfns 

thingie? 



What

02

What is the Co-dfns 
project?



A compiled APL implementation…

● Written in APL
● Compiles to the GPU
● Designed to self-host on the GPU
● Integrated closely with the interpreter

Co-dfns



APL Compiler Source Lines of Code

C Kernel Source Lines of Code

1401

APL Runtime Source Lines of Code
824

8418



Hackability
Makes it easy to extend, 
change, and update

Offline Parser
Static analysis, type 
checking, learning, etc.

Portability
Performance portable 
runtime and APIs

Written in APL
Demonstrates APL applied 
to non-traditional domains

Co-dfns features



Status
03

What’s been kickin’ chicken?







Upcoming V5+

High performance on GPUs
Limitations in core array functions

Errors can be opaque and confusing
Not easy to retarget

Non-GPU workloads can be slow

Full core language support
Much better errors

Faster for more workloads
Target more backends (JS, C, WASM)

v4



APL runtime rewrite
APL in APL (Primitives)

Parsing/Debugging Updates

New backend ports
Integration tutorials

Finished UpcomingDoing
Core performance tweaks

Runtime hardening
New feature verification

Progress



NamespaceDfns
No error guards

Full support for operators

Core only
No system functions, 

spanw&, etc.
One top-level namespace

Closed (no global refs)

Assumptions



Language

Primitives
All the “core” squiggles

(⌸ @ ⌺)

Nested Arrays
Full support for nested arrays

Host allocated

Datatypes
bool8, int16, int32, float64

char8, char16, char32
Complex

High Rank
Ranks of any size



Limitations 

Selective Assignment
Trains
Trad-fns
Error guards
Inverse
Execute
⎕IO
Format
@ ⌸ (“New” squiggles)



Axis for AllI-Beam FFI
Platform Portable FFI

Integration

Directly with DWA
Easy C API

Auto-GPU
No need to manage 

GPU manually

Embeddable

Runtime is lightweight 
and embeddable

Any dfn can receive 
an axis

Errors

Rich error messages 
and TBT stack traces

Cool Stuff



Future Work

Events/GUI
Reactive APL

Javascript
“Isomorphic” 

APL

Small Arrays
Fast “utility” 

functions

Performance
Moar!



Axis Op
Some primitives 
missing support 

DWA import/export 
isn’t working yet

Nested
Bug in stranding

Rank
Rank is broken right 

now

Characters

Known Regressions



04
How

How do I use Co-dfns?



Installation

Co-dfns

Depends On Compiler

OS Compiler ArrayFire Runtime Core



OS compiler
Visual Studio, GCC, Clang

Install Steps ArrayFire
Make sure the PATH is set!

Co-dfns
Grab it from Github

https://visualstudio.microsoft.com/
https://arrayfire.com/
https://github.com/Co-dfns/Co-dfns/releases


Builds your runtime for your 
OS/compiler

Ship the codfns.dll with your app

‘fname’codfns.Fix ⎕SRC namespace
Produces a fname.dll

Links fname.dll into your workspace

MK∆RTM Fix



Shipping/Distribution

Af*.dll Module.dll
The DLL you build for 

your code via codfns.Fix

Dyalog NS
The namespace created 

by codfns.Fix if needed

ArrayFire runtime used 
by codfns.dll

Codfns.dll
Modules are linked and 
built against this DLL



Demo(-lition)



LD_LIBRARY_PATH=.:/opt/arrayfire/lib64

$ echo /opt/arrayfire/lib64 > 
/etc/ld.so.conf.d/arrayfire.conf
$ sudo ldconfig

Linux Gotcha



CREDITS: This presentation template was created by Slidesgo, 
including icons by Flaticon, infographics & images by Freepik

Thanks
aaron@dyalog.com

Questions?

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/

	Slide 1: Co-dfns Report
	Slide 2: Agenda
	Slide 3: Table of contents
	Slide 4: Why
	Slide 5: Problem
	Slide 6: Performance
	Slide 7: Some history
	Slide 8: Some history
	Slide 9: What
	Slide 10: Co-dfns
	Slide 11: 1401
	Slide 12: Hackability
	Slide 13: Status
	Slide 14
	Slide 15
	Slide 16: Upcoming V5+
	Slide 17: Finished
	Slide 18: Namespace
	Slide 19: Language
	Slide 20: Limitations 
	Slide 21: Axis for All
	Slide 22: Future Work
	Slide 23: Axis Op
	Slide 24: 04
	Slide 25: Installation
	Slide 26: OS compiler
	Slide 27: MK∆RTM
	Slide 28: Shipping/Distribution
	Slide 29: Demo(-lition)
	Slide 30: Linux Gotcha
	Slide 31: Thanks

