
Elsinore 2023

SA1: Project Management
using

Cider and Tatin (Part 1)

Gilgamesh Athoraya, Kai Jaeger, Morten Kromberg

Project Management using Link, Cider and Tatin - Part 11

 From https://github.com/dyalog-training/2023-SA1

2023-SA1.pptx

 Also on circulating USB stick:

2023-SA1.pptx
CiderTatin folder (saves downloading & installing)

Materials to Download

https://github.com/dyalog-training/2023-SA1

Project Management using Link, Cider and Tatin - Part 12

Dyalog:
Making APL more enjoyable

Tatin Cider

Project Management using Link, Cider and Tatin - Part 13

Dyalog:
Making APL more enjoyable

Tatin Cider

Project Management using Link, Cider and Tatin - Part 14

Dyalog:
Making APL more enjoyable

Project Management using Link, Cider and Tatin - Part 15

 Unlike many workshops,
there should be plenty of
time for experimentation

Hands On!

Project Management using Link, Cider and Tatin - Part 16

 What is a Project and Why
Would you want one?

 Installing, Enabling and
Upgrading
 Tatin Client and Cider

 One of .NET 6.0-8.0

 What about Link?

 Finding Cider
Documentation

 Creating a Project
 Understanding Project

Configuration Options

 Opening a Project
 (under the covers)

Session 1: Introduction
09:30-10:30 ("ish", Tea & Coffee available at all times)

Exercises 1 & 2:
Create & Open a Project!

Exercise 0:
Installation!

Project Management using Link, Cider and Tatin - Part 17

 What is a Package?

 Tatin: APL Packages
 Finding Documentation

 Finding and Installing Packages

 "Where do they go?"

 Dependencies of Dependencies

 NuGet: .NET Packages
 Finding and Installing

 "Where do they go?"

Session 2: Dependencies / Packages
10:45-11:45

Exercise 4:
Add a NuGet Dependency

Exercise 3:
Add a Tatin Dependency (or two)!

Project Management using Link, Cider and Tatin - Part 18

 Development Dependencies

 Build Your Own App

 Recap and Conclusions

 Link, Cider and Tatin ToDo Lists

SP1 This Afternoon:
 Creating your own Packages

Session 3: BYO App + Wrap Up

Exercise 5:
Build Your Own Application

12:00-13:00

Project Management using Link, Cider and Tatin - Part 19

 And WHY Would I Want One?

What is a Project

Project Management using Link, Cider and Tatin - Part 110

First, There Was The Workspace

APL
Workspace

Project Management using Link, Cider and Tatin - Part 111

Then There was Link (and git/svn etc)

Source Code
in Text Files

APL
Workspace

Link

Source
HistorySource

HistorySource
History

Project Management using Link, Cider and Tatin - Part 112

 Load other code that we depend on
 Run some code on opening the project
 Run a build function
 Decide where to load the code
 Run tests
 Set Link options to be used when loading the

source code
 Set ⎕IO, ⎕ML

What More Could You Want?

Project Management using Link, Cider and Tatin - Part 113

Cider is a Project Manager
A Project is a linked source folder,
a config file, plus optional dependencies

Tatin is a Package Manager
A Package is a project wrapped
up for consumption by others

Project Management using Link, Cider and Tatin - Part 114

 Tatin development started in 2020 using Acre
 We decided that we needed a "more agnostic" / "less

opinionated" project management system

 Cider was born in 2021
 Initially as an internal tool for Tatin development

 Tatin is now close to v1.0 (v0.98.0)
 Cider still a prototype (v0.35.0)

 Likely to evolve in next year or two

 Cider is based on Link, which is now at v4.0.11

History

Project Management using Link, Cider and Tatin - Part 115

(July 2003)

Project Management using Link, Cider and Tatin - Part 116

 In addition to being valuable educational resources…

 Packages are critical to keeping APL competitive as a
tool for building modern applications

 Support web protocols and components, data formats,
operating system APIs, security requirements, etc

 There are a few things you don't want to build from the
ground up each time

Most Importantly

Project Management using Link, Cider and Tatin - Part 117

 If you have v19.0, use]tools.activate

 Or use the "CiderTatin" folder on the USB stick

Installing Cider and Tatin

]tools.activate all
cmddir set to: /home/mkrom/.dyalog/dyalog.190U64.files/SessionExtensions/CiderTatin:
 /home/mkrom/MyUCMDs:/opt/mdyalog/19.0/64/unicode/SALT/spice
Now restart APL to complete activation.

Project Management using Link, Cider and Tatin - Part 118

 If you have v19.0, use]tools.activate

 Or use the "CiderTatin" folder on the USB stick
 Or follow normal Tatin installation instructions

 … and then use Tatin to install the package Cider

 (see the following slides)

Installing Cider and Tatin

]tools.activate all
cmddir set to: /home/mkrom/.dyalog/dyalog.190U64.files/SessionExtensions/CiderTatin:
 /home/mkrom/MyUCMDs:/opt/mdyalog/19.0/64/unicode/SALT/spice
Now restart APL to complete activation.

Project Management using Link, Cider and Tatin - Part 119

Cleanup If Necessary
In the following, replace …blabla… by whatever is appropriate, e.g.

Dyalog APL 18.2 Unicode
Dyalog APL-64 18.2 Unicode
Dyalog APL-64 19.0 Unicode

And mkrom by your user id.

Check for the existence of an existing installation:

]settings cmddir
C:\Users\mkrom\Documents\…blabla…/StartupSession/CiderTatin;

C:\Users\mkrom\Documents\MyUCMDs;
C:\Program Files\Dyalog\Dyalog APL-64 19.0 Unicode\SALT\spice

Remove existing installation:

]settings cmddir "~C:\Users\mkrom\Documents\…blabla…/StartupSession/CiderTatin"
(repeats old setting)

3 ⎕NDELETE 'C:\Users\mkrom\Documents\…blabla…/StartupSession/CiderTatin'

Project Management using Link, Cider and Tatin - Part 120

Installing from USB "CiderTatin"

As before, replace …blabla… by whatever is appropriate, e.g.

Dyalog APL 18.2 Unicode
Dyalog APL-64 18.2 Unicode
Dyalog APL-64 19.0 Unicode

And mkrom by your user id.

Copy CiderTatin to:

C:\Users\mkrom\Documents\…blabla…/SessionExtensions/CiderTatin

Tell UCMD system where to find it:

]settings cmddir ",C:\Users\mkrom\Documents\…blabla…/SessionExtensions/CiderTatin"
(repeats old setting)

Project Management using Link, Cider and Tatin - Part 121

Normal Tatin Installation

Project Management using Link, Cider and Tatin - Part 122

& 19.0

Project Management using Link, Cider and Tatin - Part 123

Project Management using Link, Cider and Tatin - Part 124

Copy & Paste

Resulting in…

Project Management using Link, Cider and Tatin - Part 125

]settings cmddir ",C:\Users\mkrom\Documents\Dyalog APL-64 18.2 Unicode Files/SessionExtensions/CiderTatin" –permanent
(displays previous setting)

]tatin.version
Tatin 0.102.3+1685 2023-10-13

 Replace mkrom with your user name (⎕AN)
 If you are not using 64 Unicode

 Replace "Dyalog APL-64 Unicode Files" below with

 Dyalog APL[-64] 18.x [Unicode] Files

 Under Linux or macOS, the folder name will be
 /home/<⎕AN>/dyalog.<version>U<bit>.files/SessionExtensions/CiderTatin

Tell the UCMD system where to look

Project Management using Link, Cider and Tatin - Part 126

Installing Cider

In the following, replace [Folder] with the name of the folder that Tatin
was installed into. Probably something like:

 C:\Users\mkrom\Documents\Dyalog APL-64 18.2 Unicode Files/SessionExtensions/CiderTatin

]tatin.installPackages Cider "[Folder]/Cider"
Sure you want to create and install into [Folder]/Cider ? (Y/n) y
Installed into blabla/CiderTatin/Cider:
 aplteam-Cider-0.37.4

Project Management using Link, Cider and Tatin - Part 127

 These instructions make Cider and Tatin
available as user commands

 The APIs (⎕SE.Tatin and ⎕SE.Cider)
are not available until the first call to a
user command.

 You can materialise them with e.g.

⎕SE.UCMD 'Cider.Version'

Note

Project Management using Link, Cider and Tatin - Part 128

 NuGet is the .NET
package manager

 To use NuGet packages
with Dyalog APL, you
need .NET 6.0 or later

 (we may add support for
4.0 / "Framework" later)

NuGet Packages

Project Management using Link, Cider and Tatin - Part 129

 As .NET celebrates 20 years of existence, Microsoft is moving to the new
open source, cross-platform .NET.

 Dyalog v18.0 added a bridge to .NET 3, to complement the 20 year old bridge
to the .NET framework.

 v18.2 was tested with 3.1 ("Core") but works with 5.0 and later
 v19.0 targets 8.0 (Long Term Support version due on Nov 8th 2023)

[Microsoft].NET History

Name Platforms Version Numbers

Microsoft.NET Framework Windows 1 2 4.0 (aka "4.8" …)

".NET Core" Windows Linux macOS 3.0 3.1

".NET" Windows Linux macOS 5.0 6.0 7.0 8.0

Project Management using Link, Cider and Tatin - Part 130

 Microsoft Windows is shipped with the DotNet
Framework (version 4.8) installed
 .NET 6-8 need to be installed separately

 Current support for NuGet packages requires
.NET 6.0 or later

 Version 18.2 was shipped configured for .NET 3.1,
but seems to work fine with 6.0-8.0

 The v19.0 .NET bridge is significantly more
mature (stable/complete) than 18.2

Installing .NET

Project Management using Link, Cider and Tatin - Part 131

Verify the Installation

Project Management using Link, Cider and Tatin - Part 132

Project Management using Link, Cider and Tatin - Part 133

 … if you want to use NuGet packages later …

Configure APL to use .NET

Project Management using Link, Cider and Tatin - Part 134

Pick an Installed .NET Runtime

Pick one
of these

(Even Microsoft sometimes still calls it "Core" ☺)

Project Management using Link, Cider and Tatin - Part 135

 Under Windows, APL will use the .NET Framework by default
 Set DYALOG_NETCORE=1 to switch from Framework to ".NET"

 Environment Variable, Command Line, Registry or Config File

 Unfortunately, selecting the VERSION of .NET to use requires editing
.json files in the main Dyalog folder (see next slide)
 Version 18.2 defaults to .NET Core (3.1)
 Version 19.0 will default to 8.0
 "User Meeting Edition" defaults to 6.0 because 8.0 is a Release Candidate

DYALOG_NETCORE=1

Project Management using Link, Cider and Tatin - Part 136

Project Management using Link, Cider and Tatin - Part 137

Project Management using Link, Cider and Tatin - Part 138

]Cider.UpdateCider -?
Attempts to update the currently running version of Cider

]Tatin.UpdateTatin -?
Attempts to update the Tatin client and reports the result

Updating Cider & Tatin

Project Management using Link, Cider and Tatin - Part 139

 Install and Verify
 Tatin

 Cider

 .NET

 Set APL up to use .NET

Exercise 0

Project Management using Link, Cider and Tatin - Part 140

Back to Cider…
What *is* a Cider Project?

Project Management using Link, Cider and Tatin - Part 141

(default settings in parentheses)
source ("APLSource")
identifies the sub-folder to be loaded
(ONLY this folder will be loaded into the WS)

parent ("#")
the location source will be loaded into

projectSpace (default is project folder name)
name of the space to be created within parent

 These three parameters decide what will be loaded,
and where it will go within the workspace

 You can override the last two using –parent
and –projectSpace modifiers

Loading Code

Project Management using Link, Cider and Tatin - Part 142

dependencies ("nuget-packages" and "tatin-packages")
names of folders that will contain the dependencies

dependencies_dev ("")
name of a folder that may contain Tatin dependencies used
only during development

 All dependencies are loaded when the project is opened

 Each folder name can be followed by =targetns if
dependencies should be loaded somewhere else than
projectSpace (typically done for dependencies_dev)

For example tatin: "dev-packages=devtools"

Dependencies

Project Management using Link, Cider and Tatin - Part 143

init ("")
An APL expression to run on project open.

tests ("")
An APL expression to run your tests.

make ("")
An APL expression to launch your build process

 Cider will run the "init" expression on project load

 Cider will not currently run your tests or build processes

 User commands]cider.make &]cider.runtests
will display the settings, but leave it up to you to run things

Running Code

Project Management using Link, Cider and Tatin - Part 144

LINK section
Includes any non-default Link options that you want set when your
source is linked

SYSVARS section
Allows you to declare values for system variables

 Both of these sections are now unnecessary due to Link
enhancements:

 v3 added support for system variables

 V4 uses a .linkconfig file to store non-default options within the
source folder (in this case, APLSource/.linkconfig)

 However, they arguably still have value as documentation of
important aspects of your project configuration

Link Options and Sysvars

Project Management using Link, Cider and Tatin - Part 145

distributionFolder ("")
The target for a build process

project_url ("")
A pointer to where the project is hosted, especially if it is
on GitHub.

 You can use these in your build functions and
documentation.

 When using Cider to develop Tatin packages, atin's
"BuildPackage" acts on distributionFolder and will
include project_url in the package description

"Convenience" options

Project Management using Link, Cider and Tatin - Part 146

 Cider also has a global configuration file

 At the moment, this is "work in progress", and the
only configuration option stored here is…
 ExecuteAfterprojectOpen: a string which is executed after

opening ALL projects

[Global] Cider Configuration

Project Management using Link, Cider and Tatin - Part 147

 Two functions are provided to access the global configuration file:

[Global] Cider Configuration

⎕SE.Cider.GetCiderGlobalConfigFilename
C:\Users\mkrom\.cider\config.json

 ⊃⎕NGET ⎕SE.Cider.GetCiderGlobalConfigFilename
{
 ExecuteAfterProjectOpen: "",
}

 gc←⎕SE.Cider.GetCiderGlobalConfigFileContent
 ≢gc.ExecuteAfterProjectOpen
0

Project Management using Link, Cider and Tatin - Part 148

 Aliases provide a way to avoid typing
long folder names over and over again

Aliases

fldr← 'c:\tmp\clockproj' ⍝ Long, annoying folder name
 ⎕SE.Cider.AddAlias folder 'clocks'
 ⎕SE.Cider.GetAliasFileContent ''
 clocks c:/tmp/clockproj
]cider.openproject '[clocks]'
…
Project successfully loaded and established in "#.clockproj"

NB.]Cider.ListAliases –edit

Project Management using Link, Cider and Tatin - Part 149

Contains:
 Global config file config.json (ExecuteAfterProjectOpen)
 Alias file aliase.txt
 Template config.json file to be used when creating new projects

The [HOME]/.cider Folder

Project Management using Link, Cider and Tatin - Part 150

Back to the Cider Project

Project Management using Link, Cider and Tatin - Part 151

]Cider.CreateProject c:\tmp\anotherproject
"c:/tmp/anotherproject" does not exist yet - create? (Y/n) y

Creating a Project

Project successfully created; open as well? (Y/n) y
LINK:watch=both
Project successfully loaded and established in "#.anotherproject"

#.anotherproject.⎕nl -⍳10
CiderConfig

From .cider/cider.config.template =>

Project Management using Link, Cider and Tatin - Part 152

The New Project Folder

Project Management using Link, Cider and Tatin - Part 153

Cider Documentation

]Cider.Help
--- Select document to be viewed: -----------
1. Cider-API-Reference
2. Cider-User-Guide
3. Contributing

Select one or more items (q=quit, a=all) : 2

Project Management using Link, Cider and Tatin - Part 154

Project Management using Link, Cider and Tatin - Part 155

Project Management using Link, Cider and Tatin - Part 156

 Create a Project
 Give it an Alias
 Create a function to tell you how many functions

you have in your project.
 Configure the project to run that function on Open
 Run]Cider.Help and take a brief look at the

documents

Exercise 1
If you get a FILE NAME ERROR, delete
C:\Users\<⎕AN>\.cider\cider.config.template

Project Management using Link, Cider and Tatin - Part 157

]CIDER.OpenProject /folder/name

or]CIDER.OpenProject [alias]

or ns←⎕SE.Cider.CreateOpenParms ''
ns.folder←'/tmp/clockproj'
ns.projectSpace←'cp'

⎕SE.Cider.OpenProject ns
…blablabla…
Project successfully loaded and established in "#.cp"

Opening a Project

Project Management using Link, Cider and Tatin - Part 158

Switches (from]OpenProject -??)

Project Management using Link, Cider and Tatin - Part 159

1. Create a namespace according to
projectSpace within the
specified parent space

2. Set ⎕IO and ⎕ML according to
ciderconfig SYSVARS section

3. Use Link to load all the source code
from the folder named by source

4. Load Tatin and/or NuGet packages
(more about this soon)

5. Inject CiderConfig namespace
containing the config file settings

6. CiderConfig.HOME is set to the path
the project was loaded from

7. Execute CiderConfig.init if it is
non-empty

8. Execute ExecuteAfterprojectOpen
(from GlobalConfig) if non-empty and
ignoreUserExec is not 1

9. Display the contents of ToDo variable, if
it exists

10. *If* the project folder is managed by Git,
display the result of "git status"

What Happens on Project Open?

Project Management using Link, Cider and Tatin - Part 160

)CLEAR and open your project
1. Using the User Command

2. Using
ns←⎕SE.Cider.CreateOpenParms ''
ns.folder←'blah'
ns.someprop←'somevalue'
⎕SE.Cider.OpenProject ns

 Create a ToDo variable which reminds you to add HttpCommand as a
dependency
 Use]Link.Add to save yourproj.ToDo to file

 NB: Unlike functions and operators, Link does NOT save new variables by default

 Close and reopen your project

Exercise 2

Project Management using Link, Cider and Tatin - Part 161

 What is a Package?

 Tatin: APL Packages
 Finding Documentation

 Finding and Installing Packages

 "Where do they go?"

 Dependencies of Dependencies

 NuGet: .NET Packages
 Finding and Installing

 "Where do they go?"

Session 2: Dependencies / Packages
10:45-11:45

Exercise 4:
Add a NuGet Dependency

Exercise 3:
Add a Tatin Dependency (or two)!

Project Management using Link, Cider and Tatin - Part 162

So… What is a Package?

(From Longman Dictionary of Contemporary English)

Project Management using Link, Cider and Tatin - Part 163

A Project is…
Source Code +
 Dependencies (packages)

loaded from a package
manager

 Environment configuration
 Development tools and

processes
 Can be opened and "set up" by

a Project Manager (Cider)

A Package is…
A "build" of a project...
 In a standard format
 Can be found, downloaded

and installed by a
"Package Manager"

 Cider supports the
development of Tatin
Packages

 Cider can load Tatin + NuGet
Packages

Project Management using Link, Cider and Tatin - Part 164

Tatin
Package manager for Dyalog APL
A tasty way to package APLs
48 Packages

NuGet
Package manager for .NET
Related to "Chocolatey"
371,905 374,154 Packages

]z←tatin.listPackages
 {⍺,≢⍵}⌸{(¯1+⍵⍳'-')↑⍵}¨3↓z[;1]
 aplteam 42
 davin 4
 dyalog 2

¯2↑z
 dyalog-HttpCommand 1
 dyalog-Jarvis 1

Project Management using Link, Cider and Tatin - Part 165

 Original design by Kai Jaeger and Gilgamesh Athoraya

 Developed by Kai (first lines of code written in 2020)

 Funded by Dyalog

 Input from various people at Dyalog

 Logo by Adam Brudzewsky

 Many thanks to Davin Church, the first real user of the
system other than Kai himself

 Paul Mansour is not to blame for the current design of
Tatin, but has been an important inspiration

Introducing Tatin

Project Management using Link, Cider and Tatin - Part 166

Project Management using Link, Cider and Tatin - Part 167

Project Management using Link, Cider and Tatin - Part 168

Finding Packages – www.tatin.dev

Project Management using Link, Cider and Tatin - Part 169

Finding Packages

Project Management using Link, Cider and Tatin - Part 170

Finding Packages

We already have enough packages to (sometimes) make it difficult
to decide which one to use (and dyalog-APLProcess yet to come ☺)

Project Management using Link, Cider and Tatin - Part 171

Package Details

Project Management using Link, Cider and Tatin - Part 172

Project Management using Link, Cider and Tatin - Part 173

Project Management using Link, Cider and Tatin - Part 174

]tatin.listtags
 tags from https://tatin.dev

 apl-git-interface
 build
 calculations
 chm
 code-browsing
 code-coverage
 code-reviews
 command-generation
 communication-tools
 comparison-tool
 comparison-utilities
 components
 config-files
 converter
 copy
 cryptography
 date
 dates
 …
 …
utilities
validation
webservice
windows-event-log
windows-registry
winscp-interface
write
yes-or-no
zip-tools

]Tatin.ListPackages -group=dyalog
Registry: https://tatin.dev
Group & Name # major versions
------------ ----------------
dyalog-HttpCommand 1
dyalog-Jarvis 1

]Tatin.ListPackages -tag=crypto
Registry: https://tatin.dev
Group & Name # major versions
------------ ----------------
aplteam-HashPasswords 1

]Tatin.ListPackages

Project Management using Link, Cider and Tatin - Part 175

 Example: I use HttpCommand in just about every new project
 To add it to our Cider project:

]Cider.AddTatinDependencies HttpCommand
1 Tatin dependency added:

dyalog-HttpCommand-5.2.0

 Since we did not specify a version, we get the latest.
 Cider & Tatin create a reference to the loaded package within our project space:

D08.HttpCommand.Get 'www.dyalog.com'
[rc: 0 | msg: | HTTP Status: 200 "OK" | ≢Data: 22580]

Adding a Tatin Package

Project Management using Link, Cider and Tatin - Part 176

 Tatin.InstallPackages "installs" the package
into a folder
 (Cider.AddTatinDependencies calls it for you)

 Installed packages are registered in
apl-dependencies.txt and apl-buildlist.json

 Version numbers are major.minor.patch
 If you do not specify a complete version number,

Tatin fills in the blanks:
 No version gives you the latest version
 Latest patch if you specify major.minor
 Latest minor version if you specify major

Installing Using Tatin

Project Management using Link, Cider and Tatin - Part 177

 By default, Cider directs Tatin to put dependencies in
"tatin-packages"

 The packages themselves are in sub-folders

Cider with Tatin

Project Management using Link, Cider and Tatin - Part 178

 Cider knows how to call Tatin to add packages
 Tatin knows where to find the installation folder of an open Cider project

 (but you can explicitly specify the target folder if you want)

 Tatin will install the latest version of a uniquely identified package

Cider - Tatin Collaboration
After:
]cider.openproject c:\tmp\clockproj
Project successfully loaded and established in "#.clockproj"

The following are all equivalent:
]Cider.AddTatinDependencies HttpCommand
]Tatin.InstallPackages dyalog-HttpCommand-5.2.0
]Tatin.InstallPackages dyalog-HttpCommand c:\tmp\clockproj\tatin-packages

Project Management using Link, Cider and Tatin - Part 179

 Cider and Tatin are aware of each other:
]tatin.installpackages will install to the currently open Cider project

by default

]tatin.buildpackage/publishpackage will use Cider's
distributionPackage setting as a default

 Cider can have Tatin packages as dependencies

 Cider requires Tatin to load and run (it is a Tatin package)
 Cider can ALSO manage NuGet dependencies

 Possibly other dependency types to come

 Tatin requires Cider during development of Tatin itself
 However: At runtime, Cider and Tatin do not require each other

Why are Cider & Tatin Separate?

Project Management using Link, Cider and Tatin - Part 180

 Tatin.LoadDependencies loads the set of installed
"dependencies" into a namespace
 … according to apl-dependencies.txt and buildlist.json

 When you open a project, Cider calls
LoadDependencies for you
 It will resolve any sub-dependencies, only loading each

package once (more about this later)

 You can use LoadPackages to interactively load a
package into a running APL session
 This is only intended for interactive experimentation

LoadPackages or LoadDependencies?

Project Management using Link, Cider and Tatin - Part 181

1. Create a namespace according to
projectSpace within the
specified parent space

2. Set ⎕IO and ⎕ML according to
ciderconfig SYSVARS section

3. Use Link to load all the source code
from the folder named by source

4. Load Tatin and/or NuGet packages
(more about this soon)

5. Inject CiderConfig namespace
containing the config file settings

6. CiderConfig.HOME is set to the path
the project was loaded from

7. Execute CiderConfig.init if it is
non-empty

8. Execute ExecuteAfterprojectOpen
(from GlobalConfig) if non-empty and
ignoreUserExec is not set

9. Display the contents of ToDo variable, if
it exists

10. *If* the project folder is managed by Git,
display the result of "git status"

What Happens on Project Open?

Project Management using Link, Cider and Tatin - Part 182

Loading Dependencies
We previously installed a dependency: dyalog-HttpCommand-5.2.0:

]Cider.OpenProject /tmp/anotherproject
Project successfully loaded and established in "#.clockproj"

LoadDependencies has created a reference to the HttpCommand class inside our projectSpace, so we
can easily reference it:

#.anotherproject.HttpCommand.Get 'https://www.dyalog.com'
[rc: 0 | msg: | HTTP Status: 200 "OK" | ≢Data: 22580]

But this is an illusion: in fact, #.anotherproject.HttpCommand is a reference to a space Tatin uses to
store *ALL* loaded packages:

#.anotherproject.HttpCommand
#._tatin.dyalog_HttpCommand_5_2_0.HttpCommand

Project Management using Link, Cider and Tatin - Part 183

Loading Dependencies, Continued
The "host" namespace of a loaded package contains a namespace TatinVars,
which contains information about the package (mostly for use by the package code).
Despite the name, it contains functions:

#.anotherproject.HttpCommand.##.TatinVars.⎕NL ¯3
ASSETS CONFIG DEPENDENCIES GetFullPath2AssetsFolder HOME ID URI

#.anotherproject.HttpCommand.##.TatinVars.(ID URI)
dyalog-HttpCommand-5.2.0+1 https://tatin.dev/

When Cider opens a project which it can see *is* a Tatin package, it injects
a TatinVars space so that you can refer to this information both during development
and when the package is loaded as a dependency.

Project Management using Link, Cider and Tatin - Part 184

Dependencies of Dependencies
Great fleas have little fleas upon their backs to bite 'em,

And little fleas have lesser fleas, and so ad infinitum.

Augustus de Morgan

Both Tatin and NuGet will
automatically load such
dependencies

https://en.wikipedia.org/wiki/Ad_infinitum

Project Management using Link, Cider and Tatin - Part 185

 A package that you install can have
dependencies of its own

 Tatin will automatically install them for
you, and load them into the workspace

 Only the "Primary" dependency will be
made available as a reference in YOUR
namespace
 The dependency namespace will have

references to sub-dependencies, of course

Dependencies of Dependencies

Project Management using Link, Cider and Tatin - Part 186

• Notice FilesAndDirs-5.1.5 is not deleted
• Also notice CompareFiles_uc.dyalog

Project Management using Link, Cider and Tatin - Part 187

]Cider.OpenProject C:\tmp\fleatest
Project successfully loaded and established in "#.fleatest"

)cs fleatest
#.fleatest

⎕NL -9
CiderConfig CompareFiles ZipArchive

CompareFiles
#._tatin.aplteam_CompareFiles_4_0_1.API

⍪#._tatin.⎕nl -9
aplteam_APLTreeUtils2_1_2_0
aplteam_CommTools_1_5_0
aplteam_CompareFiles_4_0_1
aplteam_DotNetZip_2_0_2
aplteam_FilesAndDirs_5_5_0
aplteam_OS_3_0_1
aplteam_ZipArchive_0_1_1

#._tatin.aplteam_CompareFiles_4_0_1.⎕NL -9
API APLTreeUtils2 Admin CommTools ComparisonTools FilesAndDirs TatinVars

Where Do Dependencies Go?

Our dependencies

Project Management using Link, Cider and Tatin - Part 188

 A project can have two or more
dependencies that in turn depend on the
same package

 Tatin will use MVS to select a single
version which is loaded

 In this case, version 5.5.0 of FilesAndDirs
is the minimal version that satisfies all
"consumers"

 Each consumer has declared the
minimum version that it can accept:
 ZipArchive wants at least 5.1.5
 Comparefiles wants at least 5.5.0

"Minimal Version Selection" (MVS)

Project Management using Link, Cider and Tatin - Part 189

]Cider.CreateProject /tmp/fleatest
]Cider.AddTatinDependencies aplteam-ZipArchive-0.1.1
 aplteam-ZipArchive-0.1.1

)clear
]Cider.OpenProject /tmp/fleatest
 fleatest.ZipArchive.##.FilesAndDirs
#._tatin.aplteam_FilesAndDirs_5_1_5.FilesAndDirs

Project Management using Link, Cider and Tatin - Part 190

]Cider.CreateProject /tmp/fleatest
]Cider.AddTatinDependencies aplteam-ZipArchive-0.1.1
 aplteam-ZipArchive-0.1.1

)clear
]Cider.OpenProject /tmp/fleatest
 fleatest.ZipArchive.##.FilesAndDirs
#._tatin.aplteam_FilesAndDirs_5_1_5.FilesAndDirs

]Cider.AddTatinDependencies aplteam-CompareFiles-4.0.1
 aplteam-CompareFiles-4.0.1

)clear
]Cider.OpenProject /tmp/fleatest
 fleatest.ZipArchive.##.FilesAndDirs
#._tatin.aplteam_FilesAndDirs_5_5_0.API

Project Management using Link, Cider and Tatin - Part 191

]Cider.CreateProject /tmp/fleatest
]Cider.AddTatinDependencies aplteam-ZipArchive-0.1.1
 aplteam-ZipArchive-0.1.1

)clear
]Cider.OpenProject /tmp/fleatest
 fleatest.ZipArchive.##.FilesAndDirs
#._tatin.aplteam_FilesAndDirs_5_1_5.FilesAndDirs

]Cider.AddTatinDependencies aplteam-CompareFiles-4.0.1
 aplteam-CompareFiles-4.0.1

)clear
]Cider.OpenProject /tmp/fleatest
 fleatest.ZipArchive.##.FilesAndDirs
#._tatin.aplteam_FilesAndDirs_5_5_0.API

Project Management using Link, Cider and Tatin - Part 192

Pro:
 MVS gives reproducible builds:
 New versions of FilesAndDirs have no effect
 ZipArchive can upgrade to 5.5.0 w/no change

to FilesAndDirs
Con:
 People struggle to understand MVS
 Adding a new dependency can change the

version of a sub-dependency that gets loaded
Q:
 Do APL applications need MVS? Discuss…

"Minimal Version Selection" (MVS)

Project Management using Link, Cider and Tatin - Part 193

 Open your project and re-read the ToDo
 Add HttpCommand as a dependency

 Write an application function which does something with
HttpCommand

 If you have time, write a simple test for your application. If
not, write a function which outputs "All tests were successful".

 Update the "tests" config parameter, and verify the result of

]Cider.RunTests

Exercise 3

Project Management using Link, Cider and Tatin - Part 194

 NuGet is the .NET
package manager

NuGet Packages

Project Management using Link, Cider and Tatin - Part 195

Finding NuGet Packages (HARD!!!)

Project Management using Link, Cider and Tatin - Part 196

NuGet support
currently requires .NET
6.0, 7.0 or 8.0

Support for
"Framework" packages
MAY follow

 In v19.0, the namespace ⎕SE.Dyalog.NuGet
contains tools for installing and using NuGet
packages

 For examples of how to use NuGet outside Cider,
see the Tests folder at
https://github.com/Dyalog/nuget/tree/main/Tests

 Cider uses this namespace to add support for NuGet
packages, similar to that for Tatin packages

NuGet Support in Dyalog APL

https://github.com/Dyalog/nuget/tree/main/Tests

Project Management using Link, Cider and Tatin - Part 197

NuGet support
currently requires .NET
6.0, 7.0 or 8.0

Support for
"Framework" packages
MAY follow

 Example: NuGet contains a very simple package called "Clock".

 We can add it to our Cider project (by default, we get the latest version):

]Cider.AddNuGetDependencies Clock
Clock 1.0.3

 A reference to a namespace hosting the .NET package is created:

#.clockproj.Clock.UtcNow.(Hour Minute)
14 43

 In fact, the namespace is empty except for ⎕USING:

⍪clockproj.Clock.⎕USING
,c:/tmp/clockproj/nuget-packages/published/Clock.dll
,c:/tmp/clockproj/nuget-packages/published/nuget-packages.dll

Adding a NuGet Package

Project Management using Link, Cider and Tatin - Part 198

 Under Windows, Linux and macOS, .NET provides a "dotnet"
command which:
 Creates .NET projects that we use to define and manage dependencies

(complete with a C# class that we never use)
 Adds Dependencies
 "Publishes" collections of DLLs that implement packages

 Dyalog's NuGet support depends heavily on this
 We just set ⎕USING to point to the published DLLs
 The alternative is to try to replicate poorly documented .NET behaviours

dotnet command-line tool

Project Management using Link, Cider and Tatin - Part 199

 By default, NuGet dependencies go in
the nuget-packages folder:

NuGet Packages – Under the Covers

C# Stub created by
dotnet tool

Project Management using Link, Cider and Tatin - Part 1100

Same Same – But Different
Tatin NuGet

#.projectSpace.HttpCommand #.projectSpace.Clock

Project Management using Link, Cider and Tatin - Part 1101

 .NET provides a "dotnet" command which

 creates .NET projects

 add dependencies

 "publishes" collections of DLLs

 NuGet support depends heavily on this:

Example of calling dotnet tool

Project Management using Link, Cider and Tatin - Part 1102

⍪#.clockproj.Clock.⎕USING
 ,/tmp/clockproj/nuget-packages/published/Clock.dll
 ,/tmp/clockproj/nuget-packages/published/nuget-packages.dll

 #.clockproj.Clock.UtcNow
26-09-2023 15:24:34 +00:00

C# Stub compiled
to a dll

Project Management using Link, Cider and Tatin - Part 1103

Dependencies - Reporting
]Cider.OpenProject /tmp/clockproj

… established in #.clockproj

]Cider.ListTatinDependencies
Source Package-ID Principal URL
--------------- ------------------------- --------- ------------------
tatin-packages/ dyalog-HttpCommand-5.2.0 1 https://tatin.dev/

]Cider.ListNugetDependencies
Clock 1.0.3

clockproj.HttpCommand.Get 'www.dyalog.com'
[rc: 0 | msg: | HTTP Status: 200 "OK" | ≢Data: 22580]

clockproj.Clock.UtcNow
26-09-2023 15:26:37 +00:00

Project Management using Link, Cider and Tatin - Part 1104

Example of a NuGet Test Case

Project Management using Link, Cider and Tatin - Part 1105

 Add a NuGet dependency
 Morten suggests Parquet files – see the NuGet Tests

https://github.com/Dyalog/nuget/tree/main/Tests

 Or just go for Clock ☺

 Create a project which uses both HttpCommand
and your NuGet dependency

Exercise 4

https://github.com/Dyalog/nuget/tree/main/Tests

Project Management using Link, Cider and Tatin - Part 1106

 Development Dependencies

 Build Your Own App

 Recap and Conclusions

 Link, Cider and Tatin ToDo Lists

SP1 This Afternoon:
 Creating your own Packages

Session 3: BYO App + Wrap Up

Exercise 5:
Build Your Own Application

12:00-13:00 (ish?)

Project Management using Link, Cider and Tatin - Part 1107

 Packages that you need during development, but not runtime

 At the moment (October 2023), only Tatin dependencies are supported

 To add development dependencies, you must edit
dependencies_dev in cider.config

 You must also name the folder explicitly when adding
dependencies. For example, if you set dependencies_dev to
'tatin-dev-packages':

]Cider.AddTatinDependencies Tester2 /tmp/fleatest/tatin-dev-packages

Development Dependencies

Project Management using Link, Cider and Tatin - Part 1108

 OpenProject loads both sets of dependencies
 Your runtime application should only load the

"normal" dependencies
 The separation means that development

dependencies will not influence MVS for your
runtime dependencies

Development Dependencies

Project Management using Link, Cider and Tatin - Part 1109

 Review of Names & Messages
 Dyalog to help with Documentation

 Shell-callable API for installation
 Ability to manage Local / Intermediate package stores

within an organisation
 Is MVS the right choice?
 Do we need "recommended" packages.

 Recommended by whom?

 Ability to import part of a package (e.g. dfns cmpx)?
 Actually running tests and builds for you

Cider and Tatin "To Do" lists

Project Management using Link, Cider and Tatin - Part 1110

Link v4.0 Highlights
 Configuration Files (incl "Global" config)
 Link single Class or Namespace file
 Create/Export/Import default to current

namespace if none supplied
 Support for character vectors, matrices

and vec-of-vecs in simple text files
 Link now being used by APL interpreter to

load user code at startup

Link 5 & 6
 Crawler which will periodically compare

workspace to source folders
 Postponed from 3.0 to 4.0

 Postponed from 4.0 to 5.0

 Create a proper API
 (likely to get bumped to v6)

Link Road Map

Project Management using Link, Cider and Tatin - Part 1111

 Build Your Own Application
 As a Cider project

 Must use at least one dependency

Exercise 5

	Default Section
	Slide 0: SA1: Project Management using Cider and Tatin (Part 1)
	Slide 1: Materials to Download
	Slide 2: Dyalog: Making APL more enjoyable
	Slide 3: Dyalog: Making APL more enjoyable
	Slide 4: Dyalog: Making APL more enjoyable
	Slide 5: Hands On!
	Slide 6: Session 1: Introduction
	Slide 7: Session 2: Dependencies / Packages
	Slide 8: Session 3: BYO App + Wrap Up
	Slide 9: What is a Project
	Slide 10: First, There Was The Workspace
	Slide 11: Then There was Link (and git/svn etc)
	Slide 12: What More Could You Want?
	Slide 13: Cider is a Project Manager A Project is a linked source folder, a config file, plus optional dependencies
	Slide 14: History
	Slide 15
	Slide 16: Most Importantly
	Slide 17: Installing Cider and Tatin
	Slide 18: Installing Cider and Tatin
	Slide 19: Cleanup If Necessary
	Slide 20: Installing from USB "CiderTatin"
	Slide 21: Normal Tatin Installation
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Tell the UCMD system where to look
	Slide 26: Installing Cider
	Slide 27: Note
	Slide 28: NuGet Packages
	Slide 29: [Microsoft].NET History
	Slide 30: Installing .NET
	Slide 31: Verify the Installation
	Slide 32
	Slide 33: Configure APL to use .NET
	Slide 34: Pick an Installed .NET Runtime
	Slide 35: DYALOG_NETCORE=1
	Slide 36
	Slide 37
	Slide 38: Updating Cider & Tatin
	Slide 39: Exercise 0
	Slide 40: Back to Cider… What *is* a Cider Project?
	Slide 41: Loading Code
	Slide 42: Dependencies
	Slide 43: Running Code
	Slide 44: Link Options and Sysvars
	Slide 45: "Convenience" options
	Slide 46: [Global] Cider Configuration
	Slide 47: [Global] Cider Configuration

	Untitled Section
	Slide 48: Aliases
	Slide 49: The [HOME]/.cider Folder
	Slide 50: Back to the Cider Project
	Slide 51: Creating a Project
	Slide 52: The New Project Folder
	Slide 53: Cider Documentation
	Slide 54
	Slide 55
	Slide 56: Exercise 1
	Slide 57: Opening a Project
	Slide 58: Switches (from]OpenProject -??)
	Slide 59: What Happens on Project Open?
	Slide 60: Exercise 2
	Slide 61: Session 2: Dependencies / Packages
	Slide 62: So… What is a Package?
	Slide 63
	Slide 64
	Slide 65: Introducing Tatin
	Slide 66
	Slide 67
	Slide 68: Finding Packages – www.tatin.dev
	Slide 69: Finding Packages
	Slide 70: Finding Packages
	Slide 71: Package Details
	Slide 72
	Slide 73
	Slide 74:]Tatin.ListPackages
	Slide 75: Adding a Tatin Package
	Slide 76: Installing Using Tatin
	Slide 77: Cider with Tatin
	Slide 78: Cider - Tatin Collaboration
	Slide 79: Why are Cider & Tatin Separate?
	Slide 80: LoadPackages or LoadDependencies?
	Slide 81: What Happens on Project Open?
	Slide 82: Loading Dependencies
	Slide 83: Loading Dependencies, Continued
	Slide 84: Dependencies of Dependencies
	Slide 85: Dependencies of Dependencies
	Slide 86
	Slide 87: Where Do Dependencies Go?
	Slide 88: "Minimal Version Selection" (MVS)
	Slide 89
	Slide 90
	Slide 91
	Slide 92: "Minimal Version Selection" (MVS)
	Slide 93: Exercise 3
	Slide 94: NuGet Packages
	Slide 95: Finding NuGet Packages (HARD!!!)
	Slide 96: NuGet Support in Dyalog APL
	Slide 97: Adding a NuGet Package
	Slide 98: dotnet command-line tool
	Slide 99: NuGet Packages – Under the Covers
	Slide 100: Same Same – But Different
	Slide 101: Example of calling dotnet tool
	Slide 102
	Slide 103: Dependencies - Reporting
	Slide 104
	Slide 105: Exercise 4
	Slide 106: Session 3: BYO App + Wrap Up
	Slide 107: Development Dependencies
	Slide 108: Development Dependencies
	Slide 109: Cider and Tatin "To Do" lists
	Slide 110: Link Road Map
	Slide 111: Exercise 5

