
Elsinore 2023

Web Services Workshop
15 October 2023

Brian Becker, Rich Park, Josh David

Web Services Workshop1

 Introductions

 Goals

 Using Web Services - HttpCommand

 Break

 Building Web Services Part 1 - Jarvis

 Break

 Building Web Services Part 2 - WebSockets

Agenda

Web Services Workshop2

 Learn enough about HttpCommand to call web services

 Learn enough about Jarvis to implement a simple JSON-based web service

 Learn enough about WebSocketServer to build a simple "Publish/Subscribe" interface for the client side
of our web service

Goals

Web Services Workshop3

 Sample application

 Client side uses HTML, CSS, and JavaScript – we will not cover these in detail

 Server side implements a very simple “portfolio” application

 HTTP vs HTTPS

 Use HTTPS in any production environment that uses authentication or confidential data

Disclaimers

Web Services Workshop4

Client Examples:
A web browser,
HttpCommand, cURL,
JavaScript, Python

 HTTP is a request-response protocol

 A client sends a request to a server

 The server receives the request

 The server runs an application to process the request

 The server sends a response back to the client

 The client receives the response

HTTP Communications 101

Server Examples:
IIS, Apache, Nginx, Jarvis,
DUI/MiServer

Web Services Workshop5

Client Examples:
A web browser,
HttpCommand, cURL,
JavaScript, Python

HTTP Communications 101

Server Examples:
IIS, Apache, Nginx, Jarvis,
DUI/MiServer

Web Services Workshop6

HttpCommand is a utility that is well-suited to enable the APLer to interact with web services because it:

 Allows you to specify an HTTP request in a manner that is conducive to an APLer

 Sends a properly formatted HTTP request to the server

 Receives the server's response

 Decomposes the response in a manner that is conducive to an APLer

 Minimizes the need for you to learn a lot about HTTP

HttpCommand

Web Services Workshop7

HttpCommand is bundled with Dyalog APL and can be loaded using]load

]load HttpCommand
#.HttpCommand

HttpCommand.Upgrade can obtain the latest released version, if one is available.
DO NOT use HttpCommand.Upgrade in production code as you won't know in advance if the new version has a major version
change that potentially introduces a breaking change.

HttpCommand.Upgrade
0 Upgraded to HttpCommand 5.3.6 2023-08-31 from HttpCommand ...

HttpCommand is documented online; HttpCommand.Documentation will display a link to the online documentation.

HttpCommand.Documentation
See https://dyalog.github.io/HttpCommand/

Exercise 1: Obtaining HttpCommand

Web Services Workshop8

⊢ resp ← HttpCommand.Get 'dyalog.com'
[rc: 0 | msg: | HTTP Status: 200 "OK" | ≢Data: 21783]

resp.(7 3⍴⎕nl -⍳9)
BytesWritten Command Cookies
Data Elapsed GetHeader
Headers Host HttpMessage
HttpStatus HttpVersion IsOK
OutFile Path PeerCert
Port Redirections Secure
URL msg rc

'hr' ⎕WC 'HTMLRenderer' ('HTML' resp.Data)

Your first HttpCommand

resp is a namespace that
contains the response payload, if
any, and metadata about the
response.

Web Services Workshop9

"One time" functions:

 Get - Issue a GET request
resp← HttpCommand.Get URL Params Headers

 Do - Send any HTTP Command:
resp← HttpCommand.Do Command URL Params Headers

 GetJSON - Interact with JSON-based web services
resp← HttpCommand.GetJSON Command URL Params Headers

New - Create a new request instance:
req← HttpCommand.New Command URL Params Headers

HttpCommand "Shortcut" Functions

Web Services Workshop10

The "One time" HttpCommand functions (Get, GetJSON, and Do):

 create, configure and run a local HttpCommand instance.
They send the request and return the response namespace.
The instance, being local to the function, disappears when the function exits.

 No information is carried over from one invocation to the next

When you create an HttpCommand instance using HttpCommand.New:

 request setting that you set persist in the instance - you don't need to respecify them each time

 HTTP cookies that are returned by the server are preserved and sent on subsequent requests

 the connection to the server remains open unless it's closed by the server

"One time" vs "Create an Instance"

Web Services Workshop11

 Create a new "POST" HTTP request to create a GitHub repository
req←HttpCommand.New 'post' 'https://api.github.com/user/repos'

 Set the authentication for the request
req.(AuthType Auth)←'bearer' GitHubAPIToken

 Create parameters for the request
req.Params←⎕NS ''
req.Params.(name description)←'test-repo' 'test repository'

Anatomy of an HTTP Request

Web Services Workshop12

Common HTTP Methods:

GET – read a resource

POST – update a resource

PUT – replace a resource

DELETE – delete a resource

PATCH – update a resource

Method Endpoint HttpVersion
Headers

Body

Anatomy of an HTTP Request

Web Services Workshop13

Common HTTP Methods:

GET – read a resource

POST – update a resource

PUT – replace a resource

DELETE – delete a resource

PATCH – update a resource

Method Endpoint HttpVersion
Headers

Body

POST /user/repos HTTP/1.1
Host: api.github.com
User-Agent: Dyalog-HttpCommand/5.4.0
Accept: */*
Accept-Encoding: gzip, deflate
Authorization: Bearer [--Your Token--]
Content-Type: application/json;charset=utf-8
Content-Length: 52

{"description":"test repository","name":"test-repo"}

Anatomy of an HTTP Request

Web Services Workshop14

HttpVersion HttpStatus HttpMessage
Headers

Body

Anatomy of an HTTP Response

Web Services Workshop15

HttpVersion HttpStatus HttpMessage
Headers

Body

HTTP/1.1 201 Created
Server: GitHub.com
Date: Fri, 08 Sep 2023 18:36:10 GMT
Content-Type: application/json; charset=utf-8
Content-Length: 5562
Location: https://api.github.com/repos/plusdottimes/test-repo

{"id":689076423,"node_id":"R_kgDOKRJ4xw","name":"test-
repo","full_name":"plusdottimes/test-repo" ...

Anatomy of an HTTP Response

https://api.github.com/repos/plusdottimes/test-repo

Web Services Workshop16

Using HttpCommand

1. Create an instance

2. Configure your request

3. Send the request

4. Inspect the response

Web Services Workshop17

h←HttpCommand.New args

The following are all equivalent:

req←HttpCommand.New 'post' 'bloofo.com' (⍳10) ('content-type' 'application/json')

req←HttpCommand.New ''
req.(Command URL Params)←'post' 'bloofo.com' (⍳10)
req.Headers←'content-type' 'application/json'

ns←⎕NS ''
ns.(Command URL Params)←'post' 'bloofo.com' (⍳10)
ns.Headers←'content-type' 'application/json'
req←HttpCommand.New ns

1. Create an instance

Web Services Workshop18

Using HttpCommand

1. Create an instance

2. Configure your request

3. Send the request

4. Inspect the response

Web Services Workshop19

Command, URL, Params, and Headers are the most-commonly specified settings.
This is why they are arguments to Get, Do, GetJSON, and New.

Once you have created a request using New, you can specify any additional settings before sending the request.

req←HttpCommand.New 'get'
req.URL←'https://api.github.com/users/plusdottimes/repos'
req.OutFile←'/tmp/myfile.json'
req.MaxPayloadSize←250000

req.Config ⍝ will return all settings for this request

req.Show ⍝ will return the request as it will be sent to the server

2. Configure your request

Web Services Workshop20

HttpCommand will generate several headers, unless you specify them yourself.

'header-name' req.SetHeader 'value' ⍝ unconditionally set a header

'header-name' req.AddHeader 'value' ⍝ set a header, if not already set

req.RemoveHeader 'header-name' ⍝ remove a header

req.Headers ⍝ contains the headers that you have set

'accept-encoding' req.SetHeader '' ⍝ suppress an HttpCommand default header

You can use AuthType and Auth to specify the Authorization header (or set the header directly)

You can use ContentType to specify the Content-Type header (or set the header directly)

Working with Headers

Web Services Workshop21

Many web services return XML or JSON payloads.

Use TranslateData←1 to automatically translate these ⎕XML or ⎕JSON as appropriate

req←HttpCommand.New 'get' 'https://api.github.com/users/plusdottimes/repos'

⊢resp←req.Run
[rc: 0 | msg: | HTTP Status: 200 "OK" | ≢Data: 10026]

50↑resp.Data
[{"id":688060385,"node_id":"R_kgDOKQL34Q","name":"Public","full_name":"plusdotti

req.TranslateData←1

⊢resp←req.Run
[rc: 0 | msg: | HTTP Status: 200 "OK" | ≢Data: 2]

↑resp.Data.(full_name created_at)
plusdottimes/Public 2023-09-06T15:08:19Z
plusdottimes/test-repo 2023-09-08T18:36:09Z

req.TranslateData←1

Web Services Workshop22

Using HttpCommand

1. Create an instance

2. Configure your request

3. Send the request

4. Inspect the response

Web Services Workshop23

req←HttpCommand.New 'get'
req.URL←'https://api.github.com/users/plusdottimes/repos'

Use the Run method to send the request

⊢resp←req.Run
[rc: 0 | msg: | HTTP Status: 200 "OK" | ≢Data: 10026]

3. Send the request

Web Services Workshop24

Using HttpCommand

1. Create an instance

2. Configure your request

3. Send the request

4. Inspect the response

Web Services Workshop25

resp.IsOK checks that 0=rc and 2=⌊0.01×HttpStatus

resp.IsOK
1

resp.Headers ⍝ contains the response headers

resp.Data ⍝ contains the response payload

4. Inspect the response

Web Services Workshop26

1. Create an instance [23] req←HttpCommand.New 'get' 'someurl.com'

2. Configure your request [24] req.TranslateData←1
[25] 'content-encoding' req.SetHeader ''
[26] req.MaxPayloadSize←200000

3. Send the request [27] resp←req.Run

4. Inspect the response [28] :If resp.IsOK
[29] ⍝ code to run on success
[30] :Else
[31] ⍝ code to run on failure
[32] :EndIf

Recap

Web Services Workshop27

 Find the API description for the service

 for example, search for "github api" or "google maps api"

 Authentication - some services may require an API key for usage tracking, billing, and to mitigate misuse.

 GitHub authentication

 Cost - some services are free, others have a variety of billing models

 Google Maps pricing

Web Service APIs

https://www.google.com/search?q=github+api
https://www.google.com/search?q=google+maps+api
https://docs.github.com/en/rest/overview/authenticating-to-the-rest-api
https://mapsplatform.google.com/pricing/

Web Services Workshop28

GET request parameters are in the query string of the URL

https://www.alphavantage.co/query?function=INTRADAY&symbol=IBM&interval=5min

req←HttpCommand.New 'get' 'https://www.alphavantage.co/query'

req.Params←'function' 'INTRADAY' 'symbol' 'IBM' 'interval' '5min'

OR req.Params←('function' 'INTRADAY') ('symbol' 'IBM') ('interval' '5min')

OR req.Params←3 2⍴'function' 'INTRADAY' 'symbol' 'IBM' 'interval' '5min'

OR req.Params←⎕NS ''
req.Params.(function symbol interval)←'INTRADAY' 'IBM' '5min'

Translating API Examples into HttpCommand

https://www.alphavantage.co/query?function=INTRADAY&symbol=IBM&interval=5min

Web Services Workshop29

POST, PUT, DELETE request parameters are in the body of the request

curl -L \
-X POST \
-H "Accept: application/vnd.github+json" \
-H "Authorization: Bearer [--Your Token--]" \
-H "X-GitHub-Api-Version: 2022-11-28" \
https://api.github.com/user/repos \
-d '{"name":"test-repo","description":"test repository"}'

Source: https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-
28#create-a-repository-for-the-authenticated-user

Translating API Examples into HttpCommand

Command

Headers

URL
Params

follow any redirection

https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28#create-a-repository-for-the-authenticated-user
https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28#create-a-repository-for-the-authenticated-user

Web Services Workshop30

Once you've identified a web service, generally you will need to:

 Create a UserID

 Give some form of payment information for services that charge for use

 Generate an API key and define the scope of use for that API key

 Keep your API key secure!

 Use your API key in requests that need authorization

Generic Steps to Using an API

Web Services Workshop31

We're going to the GitHub API in the coming exercises:

 GitHub UserID plusdottimes has been created for this workshop

 A "fine-grained" personal access token has been created
This will allow us to read and write repositories in this account

 For security purposes, this UserID will be deleted following this workshop

The GitHub API

Web Services Workshop32

GitHub has two types of Personal Access Tokens

 Classic

 have access to all repositories and organizations that the user can access

 allowed to live forever

 Fine-grained

 over 50 granular permissions that can be set to "no access", "read", or "read and write"

 can specify specific repositories

 have an expiration date

GitHub Personal Access Tokens

Web Services Workshop33

We need to get GitHubAPIToken for authenticated access to GitHub.

For the adventurous:
Connect to wireless network "WebService" with password: DyalogAPL

resp←HttpCommand.GetJSON 'post' '192.168.234.10?/get' 'GitHubAPIToken'
resp.IsOK
⎕FX resp.Data

For the not-so-adventurous:
Take one of the USB drives and:

]link.import # /SP3/HttpCommand

Exercise Setup

Web Services Workshop34

Because we'll be issuing several requests to the GitHub API, we can set up a request object that we can reuse by changing its settings.
This will save us from having to re-specify a number of settings that will be common to all the requests we send.

h←HttpCommand.New ''

h.BaseURL←'https://api.github.com'

'X-GitHub-Api-Version' h.SetHeader '2022-11-28'

h.(AuthType Auth)←'bearer' GitHubAPIKey

h.TranslateData←1

Exercise: Create a GitHub Repository

Web Services Workshop35

Now that we have a request generically configured, we can specify the particular settings for to create a repository.

h.Command←'post'

h.URL←'user/repos'

p←⎕NS ''
p.(name description)←'your-repo-name' 'some description'

h.Params←p

h.Show

r←h.Run

Exercise: Create a GitHub Repository

Web Services Workshop36

h.Command←'patch'

h.URL←'repos/plusdottimes/your-repo-name'

p←⎕NS ''
p.(description visibility)←'new description' 'private'

h.Params←p

h.Show

r←h.Run

Exercise: Update a GitHub Repository

Web Services Workshop37

h.Command←'delete'

h.URL←'repos/plusdottimes/your-repo-name'

h.Params←''

h.Show

r←h.Run

Exercise: Delete a GitHub Repository

Web Services Workshop38

1. How many public repositories does the Dyalog organization have?
Hint: it's not 30 – look at the per_page parameter

2. How many releases does Dyalog/Jarvis have?

3. Create a new repository and then create an issue for that repository.

Exercises: (if we have time)

Web Services Workshop39

JSON A ND REST SER VICE

Web Services Workshop40

JA RVICE

Web Services Workshop41

JA RVIS

Web Services Workshop42

 Web Service

 Uses HTTP

 Machine-to-machine

 Variety of clients

 Python, C#, APL, JavaScript

 Specific API

 Web Server

 Uses HTTP

 Human interface

 Client is typically a browser using
HTML/CSS/JavaScript

Web Service vs. Web Server

Web Services Workshop43

Jarvis is a framework that makes it easy for an APLer to deploy applications as web services. How easy? Try this…

)clear

sum←+⌿

]load /SP3/Jarvis

j←Jarvis.New ''

j.Run

]load /SP3/HttpCommand

(HttpCommand.GetJSON 'post' 'localhost:8088/sum' (⍳10)).Data

]open http://localhost:8088

JARVIS

Web Services Workshop44

 We defined and started a web service

 Defined an "endpoint" (the sum function)

 Created (using Jarvis.New) and started the server (using j.Run)

 Used HttpCommand as a client

 Used a browser to open Jarvis' built-in HTML page that contains a JavaScript client to communicate with the web
service

What just happened?

Web Services Workshop45

What happened under the covers?

 JavaScript running in the browser created an XMLHttpRequest and sent the contents of the input window as its
payload

 Jarvis received the request and converted the payload to APL

 Jarvis called the endpoint, passing the APL payload as its right argument

 sum did its thing and returned an APL array as its result

 Jarvis translated the result into JSON and sent it back to the client as the response payload

 JavaScript in the client updated the output area on the page with the response payload

Web Services Workshop46

JSON

 Endpoints are result-returning monadic or dyadic APL functions

 All requests use HTTP POST

 Request and response payloads are JSON

 Jarvis handles all conversion between JSON and APL

 Use this when your endpoints are "functional"

REST

 Write a function for each HTTP method your service will support
(GET, POST, PUT, etc)

 Each function will:

 Take the HTTP request as its right argument

 Parse the requested resource and query parameters/payload

 Take some appropriate action

 Consider this when you are managing resources

 GET requests are easier for the client

Jarvis' Two Paradigms

Web Services Workshop47

Client Request:
POST /GetPortfolio

{myid: 12345}

Server Code:

∇r←GetPortfolio payload
[1] r←CalcPortfolio payload.myid

∇

Jarvis' Two Paradigms - JSON

Web Services Workshop48

Client Request:
GET /Portfolio?myid=12345

Server Code:
∇r←GET req

[1] :Select req.EndPoint
[2] :Case '/portfolio'
[3] myid←2⊃⎕VFI req.QueryParameters req.GetHeader 'myid'
[4] r←CalcPortfolio myid
[5] :Case '/somethingelse'
[6] ⍝ something else code
[7] :Case '/yetanotherthing'
[8] ...

Enough about REST… the rest of the workshop will focus on JSON

Jarvis' Two Paradigms - REST

Web Services Workshop49

JSON – JavaScript Object Notation

String: "this is a string"

Number: 42

Array: [1,2,"hellow world"]

Object: {"name": "value"}

ns←⎕NS ''
ns.(name age)←'Dyalog' 40
array←2 2⍴(2 2⍴⍳4)'Jarvis'('Dyalog' 23)ns

⎕JSON⍠('HighRank' 'Split')⊢array

[[[[1,2],[3,4]],"Jarvis"],[["Dyalog",23],{"age":40,"name":"Dyalog"}]]

JSON in 3 Minutes

Web Services Workshop50

CodeLocation is where Jarvis will look for your Endpoint code.

CodeLocation defaults to #

CodeLocation can be the name of or reference to an existing namespace

j.Stop
'myApp' #.⎕NS '' ⍝ create a namespace
myApp.Rotate←⌽ ⍝ define an endpoint
j.CodeLocation←#.myApp ⍝ or '#.myApp'
j.Start

CodeLocation

Web Services Workshop51

CodeLocation can also be the name of a folder from where Jarvis will load your code.

If the folder is a relative file name, it will be relative to the path of:

 your workspace if you are running in a saved workspace

 your JarvisConfig file (we'll get to what this is in a couple slides)

 the Jarvis source file

CodeLocation

Web Services Workshop52

You can specify all your Jarvis settings in a JSON or JSON5 file.

JSON
{

"Port": 22361,
"CodeLocation": "./myApp"

}

JSON5
{

Port: 22361,
CodeLocation: "./myApp", // JSON5 allows comments

}

JarvisConfig File

Web Services Workshop53

By default, Jarvis will see all result-returning, monadic, dyadic, and ambivalent functions in CodeLocation
and all descendent namespaces as possible endpoints.

You can use IncludeFns and ExcludeFns to restrict what functions seen as endpoints.

Both can contain individual function names, simple wildcarded expressions, or regex (or any combination thereof).

j.ExcludeFns←'*.*' '∆*'
j.IncludeFns←'GetPortfolio' 'BuyStock'

Filtering Endpoints

Web Services Workshop54

j.Debug←0 ⍝ Jarvis traps all errors (default setting)

j.Debug←1 ⍝ Stop on error

j.Debug←2 ⍝ Intentional stop before calling your code

j.Debug←4 ⍝ Intentional stop after receiving request

Codes are additive.

∇ r←req oops payload
[1] ∘∘∘

∇

Debugging Jarvis

Web Services Workshop55

If your endpoint function is dyadic or ambivalent, Jarvis will pass the request object as the left argument.

The request object is the same for both JSON and REST paradigms.

AcceptEncodings Body Boundary Charset
Complete ContentType ContentTypes Cookies
Endpoint ErrorInfoLevel HTTPVersion Headers
HttpStatus Input Method Password
Payload PeerAddr PeerCert QueryParams
Response Server Session UserID

This means that some elements may not have meaning in one paradigm or the other.

For instance, in the JSON paradigm the Method is always 'POST'

Optional Left Argument - Request

Web Services Workshop56

There are several points (hooks) in Jarvis' flow where you can inject custom behavior.

You specify these by setting a hook setting to the name of a function to execute.

AppCloseFn - called when Jarvis shuts down

AppInitFn - called when Jarvis starts

AuthenticateFn - called on every request to authenticate the request

SessionInitFn - called when a new session is initialized

ValidateRequestFn - called on every request to perform any other validation you need

User "Hooks"

Web Services Workshop57

If you need to maintain state between requests, Jarvis supports sessions using the following settings:

SessionTimeout - 0 = do not use sessions, ¯1 = no timeout, 0< session timeout time (in minutes)

SessionIdHeader – the name of the header field for the session token

SessionUseCookie - 0 = just use the header; 1 = use an HTTP cookie

SessionPollingTime - how frequently (in minutes) we should poll for timed out sessions

SessionCleanupTime - how frequently (in minutes) do we clean up timed out session info

Maintaining State With Sessions

Web Services Workshop58

j.Stop

j.SessionTimeout←1 ⍝ 1 minute session timeout

j.SessionInitFn←'initSession'

j.SessionUseCookie←1

initSession←{⍵.Session.total←0}

add←{⍺.Session.Total ⊣ ⍺.Session.Total+←+/∊⍵}

j.Start

Exercise: Using Sessions

Web Services Workshop59

AuthenticateFn specifies the name of a function to perform authentication.

AuthenticateFn should return a 0 if the authentication succeeds or is not necessary.

If you use HTTPS, you can safely transmit credentials in plaintext. Otherwise, you should be running on a network you trust or using salt
and encryption to encrypt credentials.

Authenticating

Web Services Workshop60

Jarvis can use HTTP Basic authentication (using the HTTPAuthentication setting)

When using HTTP Basic authentication Jarvis will set the request UserID and Password settings.

Browsers will send credentials with every subsequent request.

∇ r←Login req
[1] ⍝ non-empty and UserID≡Password
[2] r←(0∊⍴req.UserID)∨req.UserID≢req.Password

∇

j.Stop

j.AuthenticateFn←'Login'

j.Start

Authenticating

Web Services Workshop61

Jarvis can use HTTP Basic authentication (using the HTTPAuthentication setting)

When using HTTP Basic authentication Jarvis will set the request UserID and Password settings.

Browsers will send credentials with every subsequent request.

∇ r←Login req
[1] ⍝ non-empty and UserID≡Password
[2] r←(0∊⍴req.UserID)∨req.UserID≢req.Password

∇

j.Stop

j.AuthenticateFn←'Login'

j.Start

Authenticating

Web Services Workshop62

This is a small, simple Jarvis service found in /SP3/Jarvis

It has a simple "database" defined in database.json5 that defines the users for the application (Huey, Dewey, and Louie)
and the stocks (IBM, NVDA, and AAPL) that will be monitored.

It has 2 endpoints:

 Login – called after authentication

 Portfolio – calculates the user's portfolio value

It uses HTTP Basic authentication

It runs a simulation thread that triggers random stock price changes.

Jarvis Portfolio Service

Web Services Workshop63

Things to examine:

 JarvisConfig.json5

 authenticate

 index.html index.js

 Portfolio

 Login

Jarvis Portfolio Service

Web Services Workshop64

]load /SP3/Jarvis/Jarvis

]load /SP3/HttpCommand/HttpCommand

j←Jarvis.New '/SP3/Jarvis/JarvisConfig.json5'

j.Start

]open http://localhost:22335

h←HttpCommand.New 'post'
h.URL←'http://Huey:Huey@localhost:22335/Portfolio'
h.TranslateData←1
r←h.Run

Running the Jarvis Service

http://localhost:22335/

Web Services Workshop65

 You have a web application with a HTML/CSS/JavaScript client.

 If you use standard HTTP requests, the only way to get updated information from the server is to ask for it.

 Wouldn't it be nice if the server could "push" updated information in real time without the client having to ask for it.

 WebSockets can accomplish precisely that (and more)

Suppose…

Web Services Workshop66

As we discussed earlier, HTTP requests originate from the client and wait for a response from the server.

A WebSocket is an upgraded HTTP connection that allows either the client or the server to send data to the end of the
connection, without expecting a response.

WebSockets

Web Services Workshop67

 PubSub (Publish/Subscribe) – clients can "subscribe" to a "channel". Whenever something "happens" on the
channel, information is sent to all subscribers.
This can be very useful when implementing real-time dashboards.

 RPC (Remote Procedure Call) – Suppose you have an endpoint for your web service that may run for a lengthy
period of time. Rather than have the client wait for a response (and possibly time out), you can use a WebSocket to
push the response whenever the endpoint finishes its task. This of this like an asynchronous Jarvis.

WebSocket Uses

Web Services Workshop68

 This is relatively new work and will likely change in implementation, but not necessarily in how you, the application
developer, will interact with it.

 I'd like to make it as easy to use as Jarvis.

 I'd like a better name for it.

 If we have time, I'd like to share some of my design ideas with you and get some feedback.

 Let's play with it and then see where that leads…

WSServer (WebSocket Server)

Web Services Workshop69

)clear

]load /SP3/WSServer/*.dyalog

w←WSServer.New '/SP3/WSServer/WSSConfig.json5'

w.Start

]open file://c:/SP3/WSServer/index.html

Portfolio Service a la WebSockets

Web Services Workshop70

Things to examine:

 database.json5

 WSSConfig.json5

 index.html index.js

 Portfolio.aplf

 Login.aplf

 Ticker.aplf

WebSocket Portfolio Service

Web Services Workshop71

 Currently WSServer is a 2-tiered architecture

 A core (WSServer) that handles WebSocket connections, closures, etc.

 A "paradigm" that implements either PubSub or RPC (or some other functionality)

 I originally thought that PubSub and RPC were somewhat mutually exclusive, but I'm reconsidering that.

 Look at WSSConfig.json5

Design Questions

Web Services Workshop72

 Jarvis + WSServer

 I'm looking into adding WebSocket support within Jarvis. Then your web service may need to open only a single port.
However, it may complicate Jarvis more than I'd like.

 Perhaps they can run in concert with one another where Jarvis handles the incoming requests and WSServer serves only to
push data out.

Design Questions

Web Services Workshop73

 WebSocket Protocol

 The JavaScript WebSocket API hides a lot of the underpinnings of the WebSocket protocol.

 Tools like Conga, JavaScript's XMLHttpRequest can make use of features not available through JavaScript.

 Should we support the full protocol or will JavaScript be sufficient?

Design Questions

	Slide 0: Web Services Workshop 15 October 2023
	Slide 1: Agenda
	Slide 2: Goals
	Slide 3: Disclaimers
	Slide 4: HTTP Communications 101
	Slide 5: HTTP Communications 101
	Slide 6: HttpCommand
	Slide 7: Exercise 1: Obtaining HttpCommand
	Slide 8: Your first HttpCommand
	Slide 9: HttpCommand "Shortcut" Functions
	Slide 10: "One time" vs "Create an Instance"
	Slide 11: Anatomy of an HTTP Request
	Slide 12: Anatomy of an HTTP Request
	Slide 13: Anatomy of an HTTP Request
	Slide 14: Anatomy of an HTTP Response
	Slide 15: Anatomy of an HTTP Response
	Slide 16: Using HttpCommand
	Slide 17: 1. Create an instance
	Slide 18: Using HttpCommand
	Slide 19: 2. Configure your request
	Slide 20: Working with Headers
	Slide 21: req.TranslateData←1
	Slide 22: Using HttpCommand
	Slide 23: 3. Send the request
	Slide 24: Using HttpCommand
	Slide 25: 4. Inspect the response
	Slide 26: Recap
	Slide 27: Web Service APIs
	Slide 28: Translating API Examples into HttpCommand
	Slide 29: Translating API Examples into HttpCommand
	Slide 30: Generic Steps to Using an API
	Slide 31: The GitHub API
	Slide 32: GitHub Personal Access Tokens
	Slide 33: Exercise Setup
	Slide 34: Exercise: Create a GitHub Repository
	Slide 35: Exercise: Create a GitHub Repository
	Slide 36: Exercise: Update a GitHub Repository
	Slide 37: Exercise: Delete a GitHub Repository
	Slide 38: Exercises: (if we have time)
	Slide 39
	Slide 40
	Slide 41
	Slide 42: Web Service vs. Web Server
	Slide 43: JARVIS
	Slide 44: What just happened?
	Slide 45: What happened under the covers?
	Slide 46: Jarvis' Two Paradigms
	Slide 47: Jarvis' Two Paradigms - JSON
	Slide 48: Jarvis' Two Paradigms - REST
	Slide 49: JSON in 3 Minutes
	Slide 50: CodeLocation
	Slide 51: CodeLocation
	Slide 52: JarvisConfig File
	Slide 53: Filtering Endpoints
	Slide 54: Debugging Jarvis
	Slide 55: Optional Left Argument - Request
	Slide 56: User "Hooks"
	Slide 57: Maintaining State With Sessions
	Slide 58: Exercise: Using Sessions
	Slide 59: Authenticating
	Slide 60: Authenticating
	Slide 61: Authenticating
	Slide 62: Jarvis Portfolio Service
	Slide 63: Jarvis Portfolio Service
	Slide 64: Running the Jarvis Service
	Slide 65: Suppose…
	Slide 66: WebSockets
	Slide 67: WebSocket Uses
	Slide 68: WSServer (WebSocket Server)
	Slide 69: Portfolio Service a la WebSockets
	Slide 70: WebSocket Portfolio Service
	Slide 71: Design Questions
	Slide 72: Design Questions
	Slide 73: Design Questions

