
Elsinore 2023

TP1: Testing APL Systems

Michael Baas, Morten Kromberg, Stefan Kruger

Testing APL Systems1

Goals

 Review what we know about existing tools and
frameworks for testing

 Present some techniques that Dyalog is actually using

 Share our collective experience

 Discuss requirements for potential future frameworks
or tools that Dyalog (or the community) might develop

Testing APL Systems2

Testing APL Systems3

 Define Terminology

 Review Some Existing Frameworks & Actual Tests

Session 1: Introduction (Morten)
13:30-14:30 (ish, hopefully a bit less)

Exercise 1:
Use "Tester" package to write a test

Testing APL Systems4

 Basics

 Demo

 DIY

 Bonus: Automation

 Bonus: Code Coverage

Session 2: DTest (Michael)
14:45-15:45

Exercise: Write a test with DTest for
coolStat's "Count" function

Testing APL Systems5

 The case for automation

 Testing on the command line

 Running tests in Docker

 Automation with GitHub Actions

Session 3: Automation (Stefan)

Exercise: Deploy test automation to GitHub

16:00-17:00

Testing APL Systems6

Types of Testing

 Unit

 Regression

 Integration

 Data Driven

 Code Coverage

Techniques

 Test-driven Development

 Mocking (fakes & stubs)

 Continuous Integration

 GUI Testing (Selenium)

Terminology & Techniques

Testing APL Systems7

Unit Tests

Testing APL Systems8

Testing APL Systems9

Testing APL Systems10

Testing APL Systems11

Testing APL Systems12

Testing APL Systems13

Testing APL Systems14

Testing APL Systems15

What about primitives
with switches "built in"?

x←|÷y

Test with y positive,
negative and zero?

Code coverage is
necessary but NOT
sufficient.

Testing APL Systems16

"Unit Test" Frameworks

 https://github.com/Gianfrancoalongi/APLUnit

 A "classical" Unit Test framework, inspired by non-
APL frameworks

 https://xpqz.github.io/learnapl/testing.html

 A more pragmatic and APL-friendly approach.

Other Test Frameworks

 DTest (DyalogTest) – an internal tool used at
Dyalog, that is included with Dyalog APL

 davin-Tester – A Tatin Package by Davin Church

 aplteam-Tester2 – Tatin Package by Kai Jaeger,
used to test many of Kai's tools

 aplteam-CodeCoverage – Tatin package for
measuring code coverage

Test Frameworks for APL

Do you/we know of others?

https://github.com/Gianfrancoalongi/APLUnit
https://xpqz.github.io/learnapl/testing.html

Testing APL Systems17

https://github.com/
Gianfrancoalongi/APLUnit

Testing APL Systems18

:Namespace unittest
 ⎕IO ← 0
 run←{
 tests ← 'test_.+'⎕S'&'⎕NL ¯3
 0=≢tests: 'no tests found'
 ↑{⍺,('.'/⍨30-≢⍺),⍵⊃'[FAIL]' '[OK]'}⌿↑tests (⍎¨tests,¨⊂' ⍬')
 }
:EndNamespace

unittest.test_upper←{'FOO'≡#.upper 'foo'}

https://xpqz.github.io/
learnapl/testing.html

https://xpqz.github.io/learnapl/testing.html

Testing APL Systems19

https://xpqz.github.io/learnapl/testing.html

… also contains a "framework" for data-driven testing:

https://xpqz.github.io/learnapl/testing.html

Testing APL Systems20

Some Recent QA we have written…

 Ullu: Testing APL primitives

 Kamila's tests

 Link Testing

 Selenium

(Michael will show some examples based on DTest in the next section)

Testing APL Systems21

Testing APL Systems22

Ullu

Id & Comment

Testing APL Systems23

Testing APL Systems24

Testing APL Systems25

Testing APL Systems26

Link Testing

Testing APL Systems27

assert 'test'

Testing APL Systems28

assert 'test' 'recovery-expression'

Testing APL Systems29

Test for expected errors

Expression to run Text to find in ⎕DM

Testing APL Systems30

 The Link QA needs to test Link's responses to notifications of additions,
deletions, and changes to files

 File System Watcher cause callbacks to APL from .NET. These are:
 Not processed until the end of the current thread time slice (so if QA script keeps running, it

may be some time before the callback runs)

 Potentially simultaneous: If one takes more than one time slice to process, the next callback
may start running before the previous one is completed

 This is usually not a problem for the normal use case of editing or moving a
small number of files outside APL "by hand"

 However, for a QA that makes hundreds or thousands of additions, deletions,
moves and copies, it leads to intermittent, unpredictable failures

Mocking

Testing APL Systems31

Keep trying until
Event arrives and
is processed.

Hence the ⍎

Testing APL Systems32

Mocking This also helped a bit

Testing APL Systems33

 The out-of-order processing meant that delaying was not enough
 Create-Update-Delete notifications might not arrive in that order

 It was ultimately impossible to get the Link QA to run reliably when
using a real File System Watcher

 The solution was to "Mock" the FSW by covering all file system
operations and call the FSW callback function immediately.

 This simulated a "synchronous" FSW and finally made the tests
deterministic (after three years of messing about)

Mocking

Testing APL Systems34

Mocking Invoke FSW callback explicitly

Testing APL Systems35

 Sometimes, a test will trigger an effect
which will take time to materialise

 We have seen how Link "assert" waited in
a loop

 Automated GUI testing will nearly always
exhibit this behaviour

Asynchronous Effects / GUI Testing

Testing APL Systems36

Testing APL Systems37

Testing APL Systems38

⎕WC – No idea
how to test
automatically

Testing APL Systems39

Driving Dyalog IDE

Testing APL Systems40

Driving Dyalog IDE

Testing APL Systems41

 Write tests BEFORE fixing the problem or
adding the new functionality

 … or at least before you make the
commits ☺

Test Driven Development

Testing APL Systems42

Testing APL Systems43

Temp Folders

Testing APL Systems44

Observed APL Practices

(Small) Unit Testing
is expensive

APL functions are more
like complete modules in
other languages

Data Driven Regression
Testing is common

Generating lots of test
data in APL is easy

Continuous
Integration

On the rise in APL!

Testing APL Systems45

 Assert
 Bool rarg of built-in ≡

 How to identify failing test

 Async capability?

 Expect Specific Error
 EN or DM text

 Logging levels
 Error / Warning

 Verbose / Quiet

 Stopping behaviour

 Record Random Seed
 Log/report it on failure

 Temporary folder creation
 … And cleanup?

 Code coverage

Framework Requirement Spec

Testing APL Systems46

 Design application to allow
 Unit Testing

 Mocking

 Write tests before coding commit

 (more to come)

Recommendations

Testing APL Systems47

 aplteam-Tester2
 Kai Jaeger's own test framework for testing

his own tools / packages

 davin-Tester
 A very simple test framework

A couple of Tatin Packages

Testing APL Systems48

Tester2

Testing APL Systems49

Testing APL Systems50

Testing APL Systems51

davin-Tester

Testing APL Systems52

Testing APL Systems53

Testing APL Systems54

Testing APL Systems55

Testing APL Systems56

Testing APL Systems57

Testing APL Systems58

Testing APL Systems59

https://github.com/Dyalog-Training/DTest/coolStat/src/coolStat.apln

Our Application

Testing APL Systems60

 Write a test for one or more coolStat functions using davin-Tester

 … Or use code scraped from
https://xpqz.github.io/learnapl/testing.html (or slide #18)

Exercise 1

]tatin.loadpackages Tester

… or …

tester←'https://github.com/DavinChurch/Tester/blob/main/Source/Tester/'
{⎕SE.UCMD 'get ',tester,' ',⍵}¨'Fail.aplo' 'Pass.aplo' 'Pass_.aplo' 'Test.aplf'

https://xpqz.github.io/learnapl/testing.html

Elsinore 2023

]DTest

Michael Baas

TP1: Testing APL Systems [DTest]1

 Start Dyalog

 Same version?

 :If not ⋄ :Andif v18 ⋄ :Then
]set cmddir ",[USERPROFILE]\Documents\My UCMDs" -p

Are you ready?

TP1: Testing APL Systems [DTest]2

 Unit testing with DTest
…verify the functionality

of a specific section of code…

(for APLers: "a function")

 there's more…

 Leave inspired! 😉

Scope of the workshop

TP1: Testing APL Systems [DTest]3

Organisation of files & tests
┌─ demo/
│ ...
├───┬─ src/
│ │ coolStat.apln
├───┼─ Tests/
│ │ coolStat.dyalogtest
│ │ setup_coolStat.aplf
│ │ test_Avg.aplf
│ │ test_Median.aplf

TP1: Testing APL Systems [DTest]4

Organisation of files & tests
• tests live in a dedicated folder┌─ demo/

│ ...
├───┬─ src/
│ │ coolStat.apln
├───┼─ Tests/
│ │ coolStat.dyalogtest
│ │ setup_coolStat.aplf
│ │ test_Avg.aplf
│ │ test_Median.aplf

TP1: Testing APL Systems [DTest]5

Organisation of files & tests
• tests live in a dedicated folder
• optional .dyalogtest files define a "test suite" and

are advantegous when you have multiple test
suites ("basic " and "overnight") etc. or additional
parameters (CodeCoverage or SuccessValue)

┌─ demo/
│ ...
├───┬─ src/
│ │ coolStat.apln
├───┼─ Tests/
│ │ coolStat.dyalogtest
│ │ setup_coolStat.aplf
│ │ test_Avg.aplf
│ │ test_Median.aplf

TP1: Testing APL Systems [DTest]6

Organisation of files & tests
• tests live in a dedicated folder
• optional .dyalogtest files define a "test suite" and

are advantegous when you have multiple test
suites ("basic " and "overnight") etc. or additional
parameters (CodeCoverage or SuccessValue)

• files with prefix setup_ define setups that set the
stage

┌─ demo/
│ ...
├───┬─ src/
│ │ coolStat.apln
├───┼─ Tests/
│ │ coolStat.dyalogtest
│ │ setup_coolStat.aplf
│ │ test_Avg.aplf
│ │ test_Median.aplf

TP1: Testing APL Systems [DTest]7

Organisation of files & tests
• tests live in a dedicated folder
• optional .dyalogtest files define a "test suite" and

are advantegous when you have multiple test
suites ("basic " and "overnight") etc. or additional
parameters (CodeCoverage or SuccessValue)

• files with prefix setup_ define setups that set the
stage

• the files with prefix test_ do the real work…

┌─ demo/
│ ...
├───┬─ src/
│ │ coolStat.apln
├───┼─ Tests/
│ │ coolStat.dyalogtest
│ │ setup_coolStat.aplf
│ │ test_Avg.aplf
│ │ test_Median.aplf

TP1: Testing APL Systems [DTest]8

Organisation of files & tests
• tests live in a dedicated folder
• optional .dyalogtest files define a "test suite" and

are advantegous when you have multiple test
suites ("basic " and "overnight") etc. or additional
parameters (CodeCoverage or SuccessValue)

• files with prefix setup_ define setups that set the
stage

• the files with prefix test_ do the real work…
• and you can also have teardown_ fn that remove

the mess that the test created any leftovers

┌─ demo/
│ ...
├───┬─ src/
│ │ coolStat.apln
├───┼─ Tests/
│ │ coolStat.dyalogtest
│ │ setup_coolStat.aplf
│ │ test_Avg.aplf
│ │ test_Median.aplf

TP1: Testing APL Systems [DTest]9

Organisation of files & tests
• tests live in a dedicated folder
• optional .dyalogtest files define a "test suite" and

are advantegous when you have multiple test
suites ("basic " and "overnight") etc. or additional
parameters (CodeCoverage or SuccessValue)

• files with prefix setup_ define setups that set the
stage

• the files with prefix test_ do the real work…
• and you can also have teardown_ fn that remove

the mess that the test created any leftovers

┌─ demo/
│ ...
├───┬─ src/
│ │ coolStat.apln
├───┼─ Tests/
│ │ coolStat.dyalogtest
│ │ setup_coolStat.aplf
│ │ test_Avg.aplf
│ │ test_Median.aplf

TP1: Testing APL Systems [DTest]10

Writing tests
dfn/ test_foo1.aplf

test_foo1←{

x←argL MyFn argR

TP1: Testing APL Systems [DTest]11

Writing tests
dfn/ test_foo1.aplf

test_foo1←{

x←argL MyFn argR

xpct Assert x: ⍝ bla

{res}←a Assert b

a≡b: returns 0
a≢b: returns 1, logs failed Assertion

comment can also be in separate line
or
var ⊢ a Assert b
"var" has explanation of failure

TP1: Testing APL Systems [DTest]12

Writing tests
dfn/ test_foo1.aplf

test_foo1←{

x←argL MyFn argR

xpct Assert x: ⍝ bla

''
}

{res}←a Assert b

a≡b: returns 0
a≢b: returns 1, logs failed Assertion

comment can also be in separate line
or
var ⊢ a Assert b
"var" has explanation of failure

TP1: Testing APL Systems [DTest]13

Writing tests
tradfn / test_foo2.dyalog

∇ r←test_foo2 sink

x←argL MyFn argR
r←''

:if xpct Check x
→0 Because'test failed'

:endif

{res}←a Check b

a≡b: returns 0
a≢b: returns 1

a←a Because b
returns a and appends b to global r

TP1: Testing APL Systems [DTest]14

Writing tests
tradfn / test_foo2.dyalog

∇ r←test_foo2 sink

x←argL MyFn argR
r←''

:if xpct Check x
→0 Because'test failed'

:endif

2 Assert 1+1 ⍝ doc doc

{res}←a Check b

a≡b: returns 0
a≢b: returns 1

a←a Because b
returns a and appends b to global r

TP1: Testing APL Systems [DTest]15

Writing tests
tradfn / test_foo2.dyalog

∇ r←test_foo2 sink

x←argL MyFn argR
r←''

:if xpct Check x
→0 Because'test failed'

:endif

2 Assert 1+1 ⍝ doc doc
∇

{res}←a Check b

a≡b: returns 0
a≢b: returns 1

a←a Because b
returns a and appends b to global r

TP1: Testing APL Systems [DTest]16

]DTest

]demo

TP1: Testing APL Systems [DTest]17

Writing tests

Test functions need to return an empty string to indicate success. If you
want to use 0 or other values, have a look at the "SuccessValue"
modifier or add it to the .dyalogtest suite.

Test DSL
[docvar]⊢x Assert y OR x Check y
Returns 1 if the assertion that x=y is wrong, 0 otherwise.
If –halt modifier is set, halts execution if check fails.
Additional comments on line or immediately before or after. If
comments are computed, use docvar⊢x Assert y

x IsNotElement y
test ~x∊y and halts execution if it isn't.

x Because y
concatenates y to global "r" and returns x.
=> "Syntax sugar" to enable statements like:
:if 1 Check 2 ⋄ →0 Because'1≠2!' ⋄ :endif

n←[id] ##.RandomVal x [y]
generates y (default=1) random values identified by „id“ (like [y]?x).

('Type' 'I|W|E')Log txt
Adds txt to specified log (Info / Warning / Error)

.dyalogtest:
DyalogTest: 1.84

[SuccessValue: …]

[Setup: …]

Test: test_1

Test: test_foo

...

[Teardown: …]

Test function
∇ r←mytest sink
⍝ test stuff
x←testSubj arg
expct Assert x ⍝ doc

∇
OR

{
y←testSubj arg
[MsgVar]⊢expct Assert y: ⍝
...

}

TP1: Testing APL Systems [DTest]18

Running tests
]DTest {.dyalogtest | .aplf | .dyalog | path} -modifiers
Modifiers:
-halt: halts execution when Check or Assert fails (so that you can examine the ws)
-trace: trace into setup(s) and tests()
-verbose: show text logged with Log. (test fns should access ##.verbose if they want to support this for
⎕←..output!)
-quiet[=0|1]: only shows error messages (1) or all messages (0)
-filter=aaa: select tests to execute (supports * and ?)
-loglvl=n: controls the log files DTest creates. Value is a sum of the values.

1={base.log} - Errors
2={base}.warn.log - Warnings
4={base}.info.log - Informations
8={base}.session.log - Session log

16={base}.session.log - Session log ONLY for failing tests
32={base}.log.json - machine-readable results ("rc"=20: Success, 21=Failure)

-off[=0|1]: do (1) or do not (0) exit APL after running tests (also writes logfiles if required)
-order[=0|1|"numvec"]: order of tests. (0=random, 1=alphabetical, numvec specifies alternate order)
-SuccessValue=nnn: the value that successful tests need to return

TP1: Testing APL Systems [DTest]19

Excercise

 Implement a test for the coolStat.Count function!

 Bonus points if you find a way to improve the
implementation.
(Is there a way to improve this (is that even possible?))

TP1: Testing APL Systems [DTest]20

Test automation

]demo

TP1: Testing APL Systems [DTest]21

Automating tests
 Classic or Unicode?
 Unicode

 LX="⎕SE.DTest …."
 LOAD="…/Tests" with Run.[aplf|dyalog]

 Classic
 needs a .dws to start things
 keep it small: ⎕LX←'⎕FIX''file:…Run.aplf'''

 loglvl=32 to get a .log.json

TP1: Testing APL Systems [DTest]22

Code Coverage

 Careful: 100% Coverage does not mean 100% Correctness!

 100% Coverage means that all code was executed, all
possible branches were excuted.

 So IF your test cases were designed to be be wide and
general (and cover ALL requirements), chances are that
your code is good ;)

]demo

Elsinore 2023

Part 3: Testing Dyalog with
Docker and GitHub Actions

Stefan Krüger

Docker and GitHub Actions2

git GitHub Docker

Docker and GitHub Actions3

⬢ Learn how to run your unit tests from the shell.

⬢ Learn how to use a Docker container to run your
application's unit tests

⬢ Learn how to deploy your Docker container as a GitHub
Action to run your tests automatically on each commit

Aims

Docker and GitHub Actions4

⬢ Learn how to run your unit tests from the shell.

⬢ Learn how to use a Docker container to run your
application's unit tests

⬢ Learn how to deploy your Docker container as a GitHub
Action to run your tests automatically on each commit

Aims

Docker and GitHub Actions5

⬢ Learn how to run your unit tests from the shell.

⬢ Learn how to use a Docker container to run your
application's unit tests

⬢ Learn how to deploy your Docker container as a GitHub
Action to run your tests automatically on each commit

Aims

Docker and GitHub Actions6

⬢ Docker installed

⬢ git installed -- or GitHub Desktop

⬢ A GitHub account

⬢ Dyalog v18.2 + current(ish) DTest

Pre-requisites

Docker and GitHub Actions7

GitHub Desktop

Docker and GitHub Actions8

DEMO

Docker and GitHub Actions9

⬢ To obtain a working copy, and not having to type along, fork and
clone this repository

https://github.com/dyalog-training/2023-TP1b

Task: Fork 'n Clone

Docker and GitHub Actions10

⬢ To obtain a working copy, and not having to type along, fork and
clone this repository

https://is.gd/dytest

Task: Fork 'n Clone

Docker and GitHub Actions11

Fork...
1

2

Docker and GitHub Actions12

Enable workflows...

1

2

Docker and GitHub Actions13

...and Clone 1

2
(3)

Docker and GitHub Actions14

git clone --recursive git@github.com:{ACCT}/2023-TP1b.git

git clone --recursive https://github.com/{ACCT}/2023-TP1b.git

Console jocks:

Docker and GitHub Actions15

Actions Docker

Docker and GitHub Actions16

⬢ Code changes are automatically built, tested, and integrated
into the existing codebase on a frequent basis

⬢ GitHub has a light-weight built-in CI framework called
"Actions".

⬢ Combining Docker and Actions, we can test our Dyalog code
automatically.

GitHub Actions: Continuous integration

Docker and GitHub Actions17

⬢ Code changes are automatically built, tested, and integrated
into the existing codebase on a frequent basis

⬢ GitHub has a light-weight built-in CI framework called
"Actions".

⬢ Combining Docker and Actions, we can test our Dyalog code
automatically.

Continuous Integration?

Docker and GitHub Actions18

⬢ Code changes are automatically built, tested, and integrated
into the existing codebase on a frequent basis

⬢ GitHub has a light-weight built-in CI framework called
"Actions".

⬢ Combining Docker and Actions, we can test our Dyalog code
automatically.

Continuous Integration?

Docker and GitHub Actions19

⬢ Containerisation: lightweight form of virtualisation.

⬢ Containers share the host system's OS and isolate software
dependencies.

⬢ Efficient, easy to set up, and compatible across different
computing environments.

⬢ Useful for running tests in CI-environments.

Docker?

Docker and GitHub Actions20

⬢ Containerisation: lightweight form of virtualisation.

⬢ Containers share the host system's OS and isolate software
dependencies.

⬢ Efficient, easy to set up, and compatible across different
computing environments.

⬢ Useful for running tests in CI-environments.

Docker?

Docker and GitHub Actions21

⬢ Containerisation: lightweight form of virtualisation.

⬢ Containers share the host system's OS and isolate software
dependencies.

⬢ Efficient, easy to set up, and compatible across different
computing environments.

⬢ Useful for running tests in CI-environments.

Docker?

Docker and GitHub Actions22

⬢ Containerisation: lightweight form of virtualisation.

⬢ Containers share the host system's OS and isolate software
dependencies.

⬢ Efficient, easy to set up, and compatible across different
computing environments.

⬢ Useful for running tests in CI-environments.

Docker?

Docker and GitHub Actions23

Project Layout

.
├── src
│ ├── mysum.aplf
│ └── run.aplf
└── tests
 ├── test_assert.aplf
 └── test_mysum.aplf

Docker and GitHub Actions24

A DTest Function

test_mysum ← {
 '1+1 should equal 2'⊢2 Assert 1 #.mysum 1:
 ''
}

Docker and GitHub Actions25

Task: Run]dtest manually

]link.create # /{path}/2023-TP1b/src
]dtest /{path}/2023-TP1b/tests

Docker and GitHub Actions26

⬢ Utilise the LOAD parameter

⬢ On start-up, Dyalog will]link the folder given

⬢ If it finds a function called Run, it will run it

Running tests from the command line

Docker and GitHub Actions27

Task: Run tests from shell

% dyalog -b -s LOAD=src
Linked: # ←→ /Users/stefan/work/testws/src
All tests passed

Docker and GitHub Actions

% dyalog -b -s LOAD=src
Linked: # ←→ /Users/stefan/work/testws/src
 *** Errors logged
 test_assert: ... = "Assertion failed: 1+1 should equal 2"
 left arg = "3", ⎕DR=83, rho=
 right arg = "2", ⎕DR=83, rho=
 Time spent: 0.0s
 -order="2 1"

28

Task: Make a test fail!

Docker and GitHub Actions29

⬢ Run locates the tests, and executes]dtest, and then
⎕OFFs appropriately

⬢ The GitHub Action expects a command to return 0 on
success, and non-zero otherwise: ⎕OFF 0 means success.

The Run function

Docker and GitHub Actions30

Run dir;testdir;results

testdir ← 'tests',⍨⊃1⎕NPARTS'[/\\]$'⎕R''⊃dir
:If ~(⎕NEXISTS⍠1) testdir,'/test_*'
 ⎕←'No tests found'
 ⎕OFF 0
:EndIf
⎕PW ← 32767
results ← ⎕SE.UCMD'DTest ',testdir, ' -quiet'
:If 0=≢results
 ⎕←'All tests passed'
 ⎕OFF 0
:Else
 ⎕←results
 ⎕OFF 11
:EndIf

Called with ⊂DIR by dyalog
when encountering LOAD

Find our tests dir

Abandon play if we can't
find any tests

Call]dtest

]dtest returns empty vector in quiet mode

Return value 0 for success

FAIL!

Run

Docker and GitHub Actions31

Docker

[1] FROM dyalog/dyalog

[2] ARG DYALOG_RELEASE=18.2

[3] USER root

[4] RUN mkdir -p /home/dyalog/MyUCMDs

[5] RUN chmod 777 /home/dyalog/MyUCMDs && chown dyalog:dyalog /home/dyalog/MyUCMDs

[6] RUN mkdir /src /tests

[7] RUN chown dyalog:dyalog /src /tests

[8] COPY entrypoint.sh /entrypoint
[9] RUN chmod +x /entrypoint

[10] RUN sed -i "s/{{DYALOG_RELEASE}}/${DYALOG_RELEASE}/" /entrypoint

[11] USER dyalog

[12] ENV LOAD "/src"

[13] ENTRYPOINT ["/entrypoint"]

[1] FROM dyalog/dyalog

[2] ARG DYALOG_RELEASE=18.2

[3] USER root

[4] RUN mkdir -p /home/dyalog/MyUCMDs

[5] RUN chmod 777 /home/dyalog/MyUCMDs && chown dyalog:dyalog /home/dyalog/MyUCMDs

[6] RUN mkdir /src /tests

[7] RUN chown dyalog:dyalog /src /tests

[8] COPY entrypoint.sh /entrypoint
[9] RUN chmod +x /entrypoint

[10] RUN sed -i "s/{{DYALOG_RELEASE}}/${DYALOG_RELEASE}/" /entrypoint

[11] USER dyalog

[12] ENV LOAD "/src"

[13] ENTRYPOINT ["/entrypoint"]

[1] FROM dyalog/dyalog

[2] ARG DYALOG_RELEASE=18.2

[3] USER root

[4] RUN mkdir -p /home/dyalog/MyUCMDs

[5] RUN chmod 777 /home/dyalog/MyUCMDs && chown dyalog:dyalog /home/dyalog/MyUCMDs

[6] RUN mkdir /src /tests

[7] RUN chown dyalog:dyalog /src /tests

[8] COPY entrypoint.sh /entrypoint
[9] RUN chmod +x /entrypoint

[10] RUN sed -i "s/{{DYALOG_RELEASE}}/${DYALOG_RELEASE}/" /entrypoint

[11] USER dyalog

[12] ENV LOAD "/src"

[13] ENTRYPOINT ["/entrypoint"]

[1] FROM dyalog/dyalog

[2] ARG DYALOG_RELEASE=18.2

[3] USER root

[4] RUN mkdir -p /home/dyalog/MyUCMDs

[5] RUN chmod 777 /home/dyalog/MyUCMDs && chown dyalog:dyalog /home/dyalog/MyUCMDs

[6] RUN mkdir /src /tests

[7] RUN chown dyalog:dyalog /src /tests

[8] COPY entrypoint.sh /entrypoint
[9] RUN chmod +x /entrypoint

[10] RUN sed -i "s/{{DYALOG_RELEASE}}/${DYALOG_RELEASE}/" /entrypoint

[11] USER dyalog

[12] ENV LOAD "/src"

[13] ENTRYPOINT ["/entrypoint"]

[1] FROM dyalog/dyalog

[2] ARG DYALOG_RELEASE=18.2

[3] USER root

[4] RUN mkdir -p /home/dyalog/MyUCMDs

[5] RUN chmod 777 /home/dyalog/MyUCMDs && chown dyalog:dyalog /home/dyalog/MyUCMDs

[6] RUN mkdir /src /tests

[7] RUN chown dyalog:dyalog /src /tests

[8] COPY entrypoint.sh /entrypoint
[9] RUN chmod +x /entrypoint

[10] RUN sed -i "s/{{DYALOG_RELEASE}}/${DYALOG_RELEASE}/" /entrypoint

[11] USER dyalog

[12] ENV LOAD "/src"

[13] ENTRYPOINT ["/entrypoint"]

#!/bin/bash

export DYALOG=/opt/mdyalog/{{DYALOG_RELEASE}}/64/unicode/
export LD_LIBRARY_PATH="${DYALOG}:${LD_LIBRARY_PATH}"
export WSPATH=$WSPATH:${DYALOG}/ws
export TERM=dumb
export APL_TEXTINAPLCORE=${APL_TEXTINAPLCORE-1}
export TRACE_ON_ERROR=0
export SESSION_FILE="${SESSION_FILE-$DYALOG/default.dse}"

$DYALOG/dyalog -b -s

Docker and GitHub Actions38

Task 3: Build container locally

docker build -t dytest .

Docker and GitHub Actions

docker run --rm \
 -v
"$(pwd)/DBuildTest/DyalogBuild.dyalog:/home/dyalog/
MyUCMDs/DyalogBuild.dyalog" \
 {FILE SYSTEM MOUNTS}
 -v "$(pwd)/tests:/tests" \
 dytest

39

Container name

Remove container on exit

The messy bits in
the middle

Task 4: Run it (on macOS or Linux)

Docker and GitHub Actions40

Task 4: Run it (on macOS or Linux)

docker run --rm \
 -v
"$(pwd)/DBuildTest/DyalogBuild.dyalog:/home/dyalog/
MyUCMDs/DyalogBuild.dyalog" \
 -v "$(pwd)/src:/src" \
 -v "$(pwd)/tests:/tests" \
 dytest

Docker and GitHub Actions41

Task 4: Run it (on macOS or Linux)

docker run --rm \
 -v
"$(pwd)/DBuildTest/DyalogBuild.dyalog:/home/dyalog/
MyUCMDs/DyalogBuild.dyalog" \
 -v "$(pwd)/src:/src" \
 -v "$(pwd)/tests:/tests" \
 dytest

Docker and GitHub Actions42

Task 4: Run it (on macOS or Linux)

docker run --rm \
 -v
"$(pwd)/DBuildTest/DyalogBuild.dyalog:/home/dyalog/
MyUCMDs/DyalogBuild.dyalog" \
 -v "$(pwd)/src:/src" \
 -v "$(pwd)/tests:/tests" \
 dytest

Docker and GitHub Actions43

Task 4: Run it (Windows PowerShell)

docker run --rm `
 -v
"${PWD}/DBuildTest/DyalogBuild.dyalog:/home/dyalog/
MyUCMDs/DyalogBuild.dyalog" `
 -v "${PWD}/src:/src" `
 -v "${PWD}/tests:/tests" `
 dytest

% docker run --rm \
 -v "$(pwd)/DBuildTest/ {∘∘∘} /DyalogBuild.dyalog" \
 -v "$(pwd)/src:/src" \
 -v "$(pwd)/tests:/tests" \
 dytest
Link Warning: ⎕SE.Link.Create: .NET or .NetCore not available
- watch defaults to 'ns'
Linked: # → /src

Rebuilding user command cache... done
All tests passed

Docker and GitHub Actions45

GitHub Actions

name: Run Dyalog APL Unit Tests

on:
 push:
 branches:
 - main

jobs:
 run-dyalog:
 runs-on: ubuntu-latest

 steps:
 - name: Checkout code
 uses: actions/checkout@v2
 with:
 submodules: 'recursive'
 fetch-depth: 0

Which events trigger the Action?

What kind of O/S should the Action runner use?

Check out our repository

...including submodules

...pushes to the main branch

Use GitHub's "checkout" action

- name: Build custom Docker image
 run: docker build -t dytest .

 #]dtest requires write access to /tests
 - name: Set permissions for /tests
 run: chmod 777 tests

 - name: Run unit tests
 run: |
 docker run --rm \
 -v "${{ github.workspace
}}/DBuildTest/DyalogBuild.dyalog:/home/dyalog/MyUCMDs/DyalogBuild.dyalog"
\
 -v "${{ github.workspace }}/src:/src" \
 -v "${{ github.workspace }}/tests:/tests" \
 dytest

Build container

Tweak permissions

Run container

Docker and GitHub Actions48

Task 5: Action!

Docker and GitHub Actions49

git add src/mysum.aplf

git commit -m 'Make a test fail'

git push origin main

Git cheat-sheet

Docker and GitHub Actions50

⬢ We executed our tests from the shell using LOAD

⬢ We ran our tests in a Docker container

⬢ We deployed our Docker container using a GitHub Action

⬢ Now our every commit triggers a full test run.

Summary

Docker and GitHub Actions51

⬢ We executed our tests from the shell using LOAD

⬢ We ran our tests in a Docker container

⬢ We deployed our Docker container using a GitHub Action

⬢ Now our every commit triggers a full test run.

Summary

Docker and GitHub Actions52

⬢ We executed our tests from the shell using LOAD

⬢ We ran our tests in a Docker container

⬢ We deployed our Docker container using a GitHub Action

⬢ Now our every commit triggers a full test run.

Summary

Docker and GitHub Actions53

⬢ We executed our tests from the shell using LOAD

⬢ We ran our tests in a Docker container

⬢ We deployed our Docker container using a GitHub Action

⬢ Now our every commit triggers a full test run.

Summary

	TP1_pt1
	Default Section
	Slide 0: TP1: Testing APL Systems
	Slide 1: Goals
	Slide 2
	Slide 3: Session 1: Introduction (Morten)
	Slide 4: Session 2: DTest (Michael)
	Slide 5: Session 3: Automation (Stefan)
	Slide 6: Terminology & Techniques
	Slide 7: Unit Tests
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Test Frameworks for APL
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Some Recent QA we have written…
	Slide 21
	Slide 22: Ullu
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Link Testing
	Slide 27
	Slide 28
	Slide 29: Test for expected errors
	Slide 30: Mocking
	Slide 31
	Slide 32: Mocking
	Slide 33: Mocking
	Slide 34: Mocking
	Slide 35: Asynchronous Effects / GUI Testing
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Driving Dyalog IDE
	Slide 40: Driving Dyalog IDE
	Slide 41: Test Driven Development
	Slide 42
	Slide 43: Temp Folders
	Slide 44: Observed APL Practices
	Slide 45: Framework Requirement Spec
	Slide 46: Recommendations
	Slide 47: A couple of Tatin Packages
	Slide 48: Tester2
	Slide 49
	Slide 50
	Slide 51: davin-Tester
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: Our Application
	Slide 60: Exercise 1

	TP1_pt2
	Slide 0:]DTest
	Slide 1: Are you ready?
	Slide 2: Scope of the workshop
	Slide 3: Organisation of files & tests
	Slide 4: Organisation of files & tests
	Slide 5: Organisation of files & tests
	Slide 6: Organisation of files & tests
	Slide 7: Organisation of files & tests
	Slide 8: Organisation of files & tests
	Slide 9: Organisation of files & tests
	Slide 10: Writing tests
	Slide 11: Writing tests
	Slide 12: Writing tests
	Slide 13: Writing tests
	Slide 14: Writing tests
	Slide 15: Writing tests
	Slide 16:]DTest
	Slide 17: Writing tests
	Slide 18: Running tests
	Slide 19: Excercise
	Slide 20: Test automation
	Slide 21: Automating tests
	Slide 22: Code Coverage

	TP1_pt3
	Slide 1: Part 3: Testing Dyalog with Docker and GitHub Actions
	Slide 2
	Slide 3: Aims
	Slide 4: Aims
	Slide 5: Aims
	Slide 6: Pre-requisites
	Slide 7: GitHub Desktop
	Slide 8: DEMO
	Slide 9: Task: Fork 'n Clone
	Slide 10: Task: Fork 'n Clone
	Slide 11: Fork...
	Slide 12: Enable workflows...
	Slide 13: ...and Clone
	Slide 14: Console jocks:
	Slide 15
	Slide 16: GitHub Actions: Continuous integration
	Slide 17: Continuous Integration?
	Slide 18: Continuous Integration?
	Slide 19: Docker?
	Slide 20: Docker?
	Slide 21: Docker?
	Slide 22: Docker?
	Slide 23: Project Layout
	Slide 24: A DTest Function
	Slide 25: Task: Run]dtest manually
	Slide 26: Running tests from the command line
	Slide 27: Task: Run tests from shell
	Slide 28: Task: Make a test fail!
	Slide 29: The Run function
	Slide 30: Run
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Task 3: Build container locally
	Slide 39: Task 4: Run it (on macOS or Linux)
	Slide 40: Task 4: Run it (on macOS or Linux)
	Slide 41: Task 4: Run it (on macOS or Linux)
	Slide 42: Task 4: Run it (on macOS or Linux)
	Slide 43: Task 4: Run it (Windows PowerShell)
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49: Git cheat-sheet
	Slide 50: Summary
	Slide 51: Summary
	Slide 52: Summary
	Slide 53: Summary

