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Goals

 Review what we know about existing tools and 
frameworks for testing

 Present some techniques that Dyalog is actually using

 Share our collective experience

 Discuss requirements for potential future frameworks 
or tools that Dyalog (or the community) might develop
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 Define Terminology

 Review Some Existing Frameworks & Actual Tests

Session 1: Introduction (Morten)
13:30-14:30 (ish, hopefully a bit less)

Exercise 1: 
Use "Tester" package to write a test
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 Basics

 Demo

 DIY

 Bonus: Automation

 Bonus: Code Coverage 

Session 2: DTest (Michael)
14:45-15:45

Exercise: Write a test with DTest for 
coolStat's "Count" function
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 The case for automation

 Testing on the command line

 Running tests in Docker

 Automation with GitHub Actions

Session 3: Automation (Stefan)

Exercise: Deploy test automation to GitHub

16:00-17:00



Testing APL Systems6

Types of Testing

 Unit 

 Regression

 Integration

 Data Driven

 Code Coverage

Techniques

 Test-driven Development

 Mocking (fakes & stubs)

 Continuous Integration

 GUI Testing (Selenium)

Terminology & Techniques
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Unit Tests



Testing APL Systems8



Testing APL Systems9



Testing APL Systems10



Testing APL Systems11



Testing APL Systems12



Testing APL Systems13



Testing APL Systems14



Testing APL Systems15

What about primitives
with switches "built in"?

x←|÷y

Test with y positive,
negative and zero?

Code coverage is 
necessary but NOT
sufficient.
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"Unit Test" Frameworks

 https://github.com/Gianfrancoalongi/APLUnit 

 A "classical" Unit Test framework, inspired by non-
APL frameworks

 https://xpqz.github.io/learnapl/testing.html

 A more pragmatic and APL-friendly approach.

Other Test Frameworks

 DTest (DyalogTest) – an internal tool used at 
Dyalog, that is included with Dyalog APL

 davin-Tester – A Tatin Package by Davin Church

 aplteam-Tester2 – Tatin Package by Kai Jaeger, 
used to test many of Kai's tools

 aplteam-CodeCoverage – Tatin package for 
measuring code coverage

Test Frameworks for APL

Do you/we know of others?

https://github.com/Gianfrancoalongi/APLUnit
https://xpqz.github.io/learnapl/testing.html
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https://github.com/
Gianfrancoalongi/APLUnit
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:Namespace unittest
    ⎕IO ← 0
    run←{
        tests ← 'test_.+'⎕S'&'⎕NL ¯3
        0=≢tests: 'no tests found'
        ↑{⍺,('.'/⍨30-≢⍺),⍵⊃'[FAIL]' '[OK]'}⌿↑tests (⍎¨tests,¨⊂' ⍬')
    }
:EndNamespace

unittest.test_upper←{'FOO'≡#.upper 'foo'}

https://xpqz.github.io/
learnapl/testing.html

https://xpqz.github.io/learnapl/testing.html
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https://xpqz.github.io/learnapl/testing.html

… also contains a "framework" for data-driven testing:

https://xpqz.github.io/learnapl/testing.html
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Some Recent QA we have written…

 Ullu: Testing APL primitives

 Kamila's tests

 Link Testing

 Selenium

(Michael will show some examples based on DTest in the next section)
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Ullu

Id & Comment
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Link Testing
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assert 'test'
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assert 'test' 'recovery-expression'
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Test for expected errors

Expression to run Text to find in ⎕DM
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 The Link QA needs to test Link's responses to notifications of additions, 
deletions, and changes to files

 File System Watcher cause callbacks to APL from .NET. These are:
 Not processed until the end of the current thread time slice (so if QA script keeps running, it 

may be some time before the callback runs)

 Potentially simultaneous: If one takes more than one time slice to process, the next callback
may start running before the previous one is completed

 This is usually not a problem for the normal use case of editing or moving a 
small number of files outside APL "by hand"

 However, for a QA that makes hundreds or thousands of additions, deletions, 
moves and copies, it leads to intermittent, unpredictable failures

Mocking
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Keep trying until
Event arrives and
is processed.

Hence the ⍎
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Mocking This also helped a bit
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 The out-of-order processing meant that delaying was not enough
 Create-Update-Delete notifications might not arrive in that order

 It was ultimately impossible to get the Link QA to run reliably when
using a real File System Watcher

 The solution was to "Mock" the FSW by covering all file system 
operations and call the FSW callback function immediately.

 This simulated a "synchronous" FSW and finally made the tests 
deterministic (after three years of messing about)

Mocking
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Mocking Invoke FSW callback explicitly
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 Sometimes, a test will trigger an effect
which will take time to materialise

 We have seen how Link "assert" waited in 
a loop

 Automated GUI testing will nearly always
exhibit this behaviour

Asynchronous Effects / GUI Testing
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⎕WC – No idea 
how to test 
automatically
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Driving Dyalog IDE
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Driving Dyalog IDE
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 Write tests BEFORE fixing the problem or 
adding the new functionality

 … or at least before you make the 
commits ☺

Test Driven Development
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Temp Folders
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Observed APL Practices

(Small) Unit Testing
is expensive

APL functions are more 
like complete modules in 
other languages

Data Driven Regression 
Testing is common

Generating lots of test 
data in APL is easy

Continuous
Integration

On the rise in APL!
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 Assert
 Bool rarg of built-in ≡

 How to identify failing test

 Async capability?

 Expect Specific Error
 EN or DM text

 Logging levels
 Error / Warning

 Verbose / Quiet

 Stopping behaviour

 Record Random Seed
 Log/report it on failure

 Temporary folder creation
 … And cleanup?

 Code coverage

Framework Requirement Spec



Testing APL Systems46

 Design application to allow
 Unit Testing

 Mocking

 Write tests before coding commit

 (more to come)

Recommendations
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 aplteam-Tester2
 Kai Jaeger's own test framework for testing

his own tools / packages

 davin-Tester
 A very simple test framework

A couple of Tatin Packages
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Tester2
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davin-Tester
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https://github.com/Dyalog-Training/DTest/coolStat/src/coolStat.apln

Our Application
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 Write a test for one or more coolStat functions using davin-Tester

 … Or use code scraped from 
https://xpqz.github.io/learnapl/testing.html (or slide #18)

Exercise 1

]tatin.loadpackages Tester

… or …

tester←'https://github.com/DavinChurch/Tester/blob/main/Source/Tester/'
{⎕SE.UCMD 'get ',tester,' ',⍵}¨'Fail.aplo' 'Pass.aplo' 'Pass_.aplo' 'Test.aplf'

https://xpqz.github.io/learnapl/testing.html
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 Start Dyalog

 Same version?

 :If not   ⋄ :Andif v18   ⋄ :Then
]set cmddir ",[USERPROFILE]\Documents\My UCMDs" -p

Are you ready?
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 Unit testing with DTest
…verify the functionality 

of a specific section of code…

(for APLers: "a function")

 there's more…

 Leave inspired! 😉

Scope of the workshop
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Organisation of files & tests
┌─ demo/
│ ...
├───┬─ src/
│   │ coolStat.apln
├───┼─ Tests/
│   │ coolStat.dyalogtest
│   │ setup_coolStat.aplf
│   │ test_Avg.aplf
│   │ test_Median.aplf
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Organisation of files & tests
• tests live in a dedicated folder┌─ demo/

│ ...
├───┬─ src/
│   │ coolStat.apln
├───┼─ Tests/
│   │ coolStat.dyalogtest
│   │ setup_coolStat.aplf
│   │ test_Avg.aplf
│   │ test_Median.aplf
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Organisation of files & tests
• tests live in a dedicated folder
• optional .dyalogtest files define a "test suite" and 

are advantegous when you have multiple test 
suites ("basic " and "overnight") etc. or additional 
parameters (CodeCoverage or SuccessValue)

┌─ demo/
│ ...
├───┬─ src/
│   │ coolStat.apln
├───┼─ Tests/
│   │ coolStat.dyalogtest
│   │ setup_coolStat.aplf
│   │ test_Avg.aplf
│   │ test_Median.aplf
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Organisation of files & tests
• tests live in a dedicated folder
• optional .dyalogtest files define a "test suite" and 

are advantegous when you have multiple test 
suites ("basic " and "overnight") etc. or additional 
parameters (CodeCoverage or SuccessValue)

• files with prefix setup_ define setups that set the 
stage

┌─ demo/
│ ...
├───┬─ src/
│   │ coolStat.apln
├───┼─ Tests/
│   │ coolStat.dyalogtest
│   │ setup_coolStat.aplf
│   │ test_Avg.aplf
│   │ test_Median.aplf
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Organisation of files & tests
• tests live in a dedicated folder
• optional .dyalogtest files define a "test suite" and 

are advantegous when you have multiple test 
suites ("basic " and "overnight") etc. or additional 
parameters (CodeCoverage or SuccessValue)

• files with prefix setup_ define setups that set the 
stage

• the files with prefix test_ do the real work…

┌─ demo/
│ ...
├───┬─ src/
│   │ coolStat.apln
├───┼─ Tests/
│   │ coolStat.dyalogtest
│   │ setup_coolStat.aplf
│   │ test_Avg.aplf
│   │ test_Median.aplf
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Organisation of files & tests
• tests live in a dedicated folder
• optional .dyalogtest files define a "test suite" and 

are advantegous when you have multiple test 
suites ("basic " and "overnight") etc. or additional 
parameters (CodeCoverage or SuccessValue)

• files with prefix setup_ define setups that set the 
stage

• the files with prefix test_ do the real work…
• and you can also have teardown_ fn that remove 

the mess that the test created any leftovers

┌─ demo/
│ ...
├───┬─ src/
│   │ coolStat.apln
├───┼─ Tests/
│   │ coolStat.dyalogtest
│   │ setup_coolStat.aplf
│   │ test_Avg.aplf
│   │ test_Median.aplf
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Organisation of files & tests
• tests live in a dedicated folder
• optional .dyalogtest files define a "test suite" and 

are advantegous when you have multiple test 
suites ("basic " and "overnight") etc. or additional 
parameters (CodeCoverage or SuccessValue)

• files with prefix setup_ define setups that set the 
stage

• the files with prefix test_ do the real work…
• and you can also have teardown_ fn that remove 

the mess that the test created any leftovers

┌─ demo/
│ ...
├───┬─ src/
│   │ coolStat.apln
├───┼─ Tests/
│   │ coolStat.dyalogtest
│   │ setup_coolStat.aplf
│   │ test_Avg.aplf
│   │ test_Median.aplf
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Writing tests
dfn/ test_foo1.aplf

test_foo1←{

x←argL MyFn argR
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Writing tests
dfn/ test_foo1.aplf

test_foo1←{

x←argL MyFn argR

xpct Assert x: ⍝ bla

{res}←a Assert b

a≡b: returns 0
a≢b: returns 1, logs failed Assertion

comment can also be in separate line
or
var ⊢ a Assert b
"var" has explanation of failure
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Writing tests
dfn/ test_foo1.aplf

test_foo1←{

x←argL MyFn argR

xpct Assert x: ⍝ bla

''
}

{res}←a Assert b

a≡b: returns 0
a≢b: returns 1, logs failed Assertion

comment can also be in separate line
or
var ⊢ a Assert b
"var" has explanation of failure
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Writing tests
tradfn / test_foo2.dyalog

∇ r←test_foo2 sink

x←argL MyFn argR
r←''

:if xpct Check x
→0 Because'test failed'

:endif

{res}←a Check b

a≡b: returns 0
a≢b: returns 1

a←a Because b
returns a and appends b to global r



TP1: Testing APL Systems [DTest]14

Writing tests
tradfn / test_foo2.dyalog

∇ r←test_foo2 sink

x←argL MyFn argR
r←''

:if xpct Check x
→0 Because'test failed'

:endif

2 Assert 1+1  ⍝ doc doc

{res}←a Check b

a≡b: returns 0
a≢b: returns 1

a←a Because b
returns a and appends b to global r
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Writing tests
tradfn / test_foo2.dyalog

∇ r←test_foo2 sink

x←argL MyFn argR
r←''

:if xpct Check x
→0 Because'test failed'

:endif

2 Assert 1+1  ⍝ doc doc
∇

{res}←a Check b

a≡b: returns 0
a≢b: returns 1

a←a Because b
returns a and appends b to global r
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]DTest 

 ]demo
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Writing tests

Test functions need to return an empty string to indicate success. If you 
want to use 0 or other values, have a look at the "SuccessValue" 
modifier or add it to the .dyalogtest suite.

Test DSL
[docvar]⊢x Assert y OR   x Check y
Returns 1 if the assertion that x=y is wrong, 0 otherwise.
If –halt modifier is set, halts execution if check fails.
Additional comments on line or immediately before or after. If 
comments are computed, use docvar⊢x Assert y

x IsNotElement y
test ~x∊y and halts execution if it isn't.

x Because y
concatenates y to global "r" and returns x.
=>  "Syntax sugar" to enable statements like:
:if 1 Check 2 ⋄ →0 Because'1≠2!' ⋄ :endif

n←[id] ##.RandomVal x [y]
generates y (default=1) random values identified by „id“ (like [y]?x).

('Type' 'I|W|E')Log txt
Adds txt to specified log (Info / Warning / Error)

.dyalogtest:
DyalogTest: 1.84

[SuccessValue: …]

[Setup: …]

Test: test_1

Test: test_foo

...

[Teardown: …]

Test function
∇ r←mytest sink
⍝ test stuff
x←testSubj arg
expct Assert x  ⍝ doc

∇
OR

{ 
y←testSubj arg
[MsgVar]⊢expct Assert y: ⍝
...

}
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Running tests
]DTest {.dyalogtest | .aplf | .dyalog | path}    -modifiers
Modifiers:
-halt: halts execution when Check or Assert fails (so that you can examine the ws)
-trace: trace into setup(s) and tests()
-verbose: show text logged with Log. (test fns should access ##.verbose if they want to support this for 
⎕←..output!)
-quiet[=0|1]: only shows error messages (1) or all messages (0)
-filter=aaa: select tests to execute (supports * and ?)
-loglvl=n: controls the log files DTest creates. Value is a sum of the values.

1={base.log} - Errors
2={base}.warn.log - Warnings
4={base}.info.log - Informations
8={base}.session.log - Session log

16={base}.session.log - Session log ONLY for failing tests
32={base}.log.json - machine-readable results ("rc"=20: Success, 21=Failure)

-off[=0|1]: do (1) or do not (0) exit APL after running tests (also writes logfiles if required)
-order[=0|1|"numvec"]: order of tests. (0=random, 1=alphabetical, numvec specifies alternate order)
-SuccessValue=nnn: the value that successful tests need to return
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Excercise

 Implement a test for the coolStat.Count function!

 Bonus points if you find a way to improve the 
implementation.
(Is there a way to improve this (is that even possible?))
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Test automation

 ]demo
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Automating tests
 Classic or Unicode?
 Unicode

 LX="⎕SE.DTest …."
 LOAD="…/Tests" with Run.[aplf|dyalog]

 Classic
 needs a .dws to start things
 keep it small: ⎕LX←'⎕FIX''file:…Run.aplf'''

 loglvl=32 to get a .log.json
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Code Coverage

 Careful: 100% Coverage does not mean 100% Correctness!

 100% Coverage means that all code was executed, all 
possible branches were excuted. 

 So IF your test cases were designed to be be wide and 
general (and cover ALL requirements), chances are that 
your code is good ;)

 ]demo
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Part 3: Testing Dyalog with 
Docker and GitHub Actions

Stefan Krüger
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git GitHub Docker
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⬢ Learn how to run your unit tests from the shell.

⬢ Learn how to use a Docker container to run your 
application's unit tests

⬢ Learn how to deploy your Docker container as a GitHub 
Action to run your tests automatically on each commit

Aims
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⬢ Learn how to run your unit tests from the shell.

⬢ Learn how to use a Docker container to run your 
application's unit tests

⬢ Learn how to deploy your Docker container as a GitHub 
Action to run your tests automatically on each commit

Aims
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⬢ Learn how to run your unit tests from the shell.

⬢ Learn how to use a Docker container to run your 
application's unit tests

⬢ Learn how to deploy your Docker container as a GitHub 
Action to run your tests automatically on each commit

Aims
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⬢ Docker installed

⬢ git installed -- or GitHub Desktop

⬢ A GitHub account

⬢ Dyalog v18.2 + current(ish) DTest

Pre-requisites
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GitHub Desktop
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DEMO
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⬢ To obtain a working copy, and not having to type along, fork and 
clone this repository

https://github.com/dyalog-training/2023-TP1b

Task: Fork 'n Clone
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⬢ To obtain a working copy, and not having to type along, fork and 
clone this repository

https://is.gd/dytest

Task: Fork 'n Clone
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Fork...
1

2
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Enable workflows...

1

2
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...and Clone 1

2
(3)
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git clone --recursive git@github.com:{ACCT}/2023-TP1b.git

git clone --recursive https://github.com/{ACCT}/2023-TP1b.git

Console jocks:
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Actions Docker
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⬢ Code changes are automatically built, tested, and integrated 
into the existing codebase on a frequent basis

⬢ GitHub has a light-weight built-in CI framework called 
"Actions".

⬢ Combining Docker and Actions, we can test our Dyalog code 
automatically.

GitHub Actions: Continuous integration
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⬢ Code changes are automatically built, tested, and integrated 
into the existing codebase on a frequent basis

⬢ GitHub has a light-weight built-in CI framework called 
"Actions".

⬢ Combining Docker and Actions, we can test our Dyalog code 
automatically.

Continuous Integration?



Docker and GitHub Actions18

⬢ Code changes are automatically built, tested, and integrated 
into the existing codebase on a frequent basis

⬢ GitHub has a light-weight built-in CI framework called 
"Actions".

⬢ Combining Docker and Actions, we can test our Dyalog code 
automatically.

Continuous Integration?
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⬢ Containerisation: lightweight form of virtualisation. 

⬢ Containers share the host system's OS and isolate software 
dependencies. 

⬢ Efficient, easy to set up, and compatible across different 
computing environments.

⬢ Useful for running tests in CI-environments.

Docker?
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⬢ Containerisation: lightweight form of virtualisation. 

⬢ Containers share the host system's OS and isolate software 
dependencies. 

⬢ Efficient, easy to set up, and compatible across different 
computing environments.

⬢ Useful for running tests in CI-environments.

Docker?
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⬢ Containerisation: lightweight form of virtualisation. 

⬢ Containers share the host system's OS and isolate software 
dependencies. 

⬢ Efficient, easy to set up, and compatible across different 
computing environments.

⬢ Useful for running tests in CI-environments.

Docker?
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⬢ Containerisation: lightweight form of virtualisation. 

⬢ Containers share the host system's OS and isolate software 
dependencies. 

⬢ Efficient, easy to set up, and compatible across different 
computing environments.

⬢ Useful for running tests in CI-environments.

Docker?
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Project Layout

.
├── src
│  ├── mysum.aplf
│  └── run.aplf
└── tests
    ├── test_assert.aplf
    └── test_mysum.aplf
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A DTest Function

test_mysum ← {
    '1+1 should equal 2'⊢2 Assert 1 #.mysum 1:
    ''
}
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Task: Run ]dtest manually

]link.create # /{path}/2023-TP1b/src
]dtest /{path}/2023-TP1b/tests
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⬢ Utilise the LOAD parameter

⬢ On start-up, Dyalog will ]link the folder given

⬢ If it finds a function called Run, it will run it

Running tests from the command line
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Task: Run tests from shell

% dyalog -b -s LOAD=src
Linked: # ←→ /Users/stefan/work/testws/src
All tests passed



Docker and GitHub Actions

% dyalog -b -s LOAD=src
Linked: # ←→ /Users/stefan/work/testws/src
    *** Errors logged                                                          
        test_assert: ... = "Assertion failed: 1+1 should equal 2"
         left arg = "3", ⎕DR=83, rho=                                          
        right arg = "2", ⎕DR=83, rho=                                          
 Time spent:  0.0s                                                            
 -order="2 1"                                                                  

28

Task: Make a test fail!
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⬢ Run locates the tests, and executes ]dtest, and then 
⎕OFFs appropriately

⬢ The GitHub Action expects a command to return 0 on 
success, and non-zero otherwise: ⎕OFF 0 means success.

The Run function
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Run dir;testdir;results

testdir ← 'tests',⍨⊃1⎕NPARTS'[/\\]$'⎕R''⊃dir
:If ~(⎕NEXISTS⍠1) testdir,'/test_*'
    ⎕←'No tests found'
    ⎕OFF 0
:EndIf
⎕PW ← 32767
results ← ⎕SE.UCMD'DTest ',testdir, ' -quiet'
:If 0=≢results
    ⎕←'All tests passed'
    ⎕OFF 0
:Else
    ⎕←results
    ⎕OFF 11
:EndIf

Called with ⊂DIR by dyalog 
when encountering LOAD

Find our tests dir

Abandon play if we can't
find any tests

Call ]dtest

]dtest returns empty vector in quiet mode

Return value 0 for success

FAIL!

Run
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Docker



[1]  FROM dyalog/dyalog

[2]  ARG DYALOG_RELEASE=18.2

[3]  USER root

[4]  RUN mkdir -p /home/dyalog/MyUCMDs

[5]  RUN chmod 777 /home/dyalog/MyUCMDs && chown dyalog:dyalog /home/dyalog/MyUCMDs

[6]  RUN mkdir /src /tests

[7]  RUN chown dyalog:dyalog /src /tests

[8]  COPY entrypoint.sh /entrypoint
[9]  RUN chmod +x /entrypoint

[10] RUN sed -i "s/{{DYALOG_RELEASE}}/${DYALOG_RELEASE}/" /entrypoint

[11] USER dyalog

[12] ENV LOAD "/src"

[13] ENTRYPOINT ["/entrypoint"]



[1]  FROM dyalog/dyalog

[2]  ARG DYALOG_RELEASE=18.2

[3]  USER root

[4]  RUN mkdir -p /home/dyalog/MyUCMDs

[5]  RUN chmod 777 /home/dyalog/MyUCMDs && chown dyalog:dyalog /home/dyalog/MyUCMDs

[6]  RUN mkdir /src /tests

[7]  RUN chown dyalog:dyalog /src /tests

[8]  COPY entrypoint.sh /entrypoint
[9]  RUN chmod +x /entrypoint

[10] RUN sed -i "s/{{DYALOG_RELEASE}}/${DYALOG_RELEASE}/" /entrypoint

[11] USER dyalog

[12] ENV LOAD "/src"

[13] ENTRYPOINT ["/entrypoint"]



[1]  FROM dyalog/dyalog

[2]  ARG DYALOG_RELEASE=18.2

[3]  USER root

[4]  RUN mkdir -p /home/dyalog/MyUCMDs

[5]  RUN chmod 777 /home/dyalog/MyUCMDs && chown dyalog:dyalog /home/dyalog/MyUCMDs

[6]  RUN mkdir /src /tests

[7]  RUN chown dyalog:dyalog /src /tests

[8]  COPY entrypoint.sh /entrypoint
[9]  RUN chmod +x /entrypoint

[10] RUN sed -i "s/{{DYALOG_RELEASE}}/${DYALOG_RELEASE}/" /entrypoint

[11] USER dyalog

[12] ENV LOAD "/src"

[13] ENTRYPOINT ["/entrypoint"]



[1]  FROM dyalog/dyalog

[2]  ARG DYALOG_RELEASE=18.2

[3]  USER root

[4]  RUN mkdir -p /home/dyalog/MyUCMDs

[5]  RUN chmod 777 /home/dyalog/MyUCMDs && chown dyalog:dyalog /home/dyalog/MyUCMDs

[6]  RUN mkdir /src /tests

[7]  RUN chown dyalog:dyalog /src /tests

[8]  COPY entrypoint.sh /entrypoint
[9]  RUN chmod +x /entrypoint

[10] RUN sed -i "s/{{DYALOG_RELEASE}}/${DYALOG_RELEASE}/" /entrypoint

[11] USER dyalog

[12] ENV LOAD "/src"

[13] ENTRYPOINT ["/entrypoint"]



[1]  FROM dyalog/dyalog

[2]  ARG DYALOG_RELEASE=18.2

[3]  USER root

[4]  RUN mkdir -p /home/dyalog/MyUCMDs

[5]  RUN chmod 777 /home/dyalog/MyUCMDs && chown dyalog:dyalog /home/dyalog/MyUCMDs

[6]  RUN mkdir /src /tests

[7]  RUN chown dyalog:dyalog /src /tests

[8]  COPY entrypoint.sh /entrypoint
[9]  RUN chmod +x /entrypoint

[10] RUN sed -i "s/{{DYALOG_RELEASE}}/${DYALOG_RELEASE}/" /entrypoint

[11] USER dyalog

[12] ENV LOAD "/src"

[13] ENTRYPOINT ["/entrypoint"]



#!/bin/bash

export DYALOG=/opt/mdyalog/{{DYALOG_RELEASE}}/64/unicode/
export LD_LIBRARY_PATH="${DYALOG}:${LD_LIBRARY_PATH}"
export WSPATH=$WSPATH:${DYALOG}/ws
export TERM=dumb
export APL_TEXTINAPLCORE=${APL_TEXTINAPLCORE-1}
export TRACE_ON_ERROR=0
export SESSION_FILE="${SESSION_FILE-$DYALOG/default.dse}"

$DYALOG/dyalog -b -s
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Task 3: Build container locally

docker build -t dytest .
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docker run --rm \
 -v 
"$(pwd)/DBuildTest/DyalogBuild.dyalog:/home/dyalog/
MyUCMDs/DyalogBuild.dyalog" \
  {FILE SYSTEM MOUNTS}
  -v "$(pwd)/tests:/tests" \
  dytest

39

Container name

Remove container on exit

The messy bits in 
the middle

Task 4: Run it (on macOS or Linux)
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Task 4: Run it (on macOS or Linux)

docker run --rm \
 -v 
"$(pwd)/DBuildTest/DyalogBuild.dyalog:/home/dyalog/
MyUCMDs/DyalogBuild.dyalog" \
  -v "$(pwd)/src:/src" \
  -v "$(pwd)/tests:/tests" \
  dytest
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Task 4: Run it (on macOS or Linux)

docker run --rm \
 -v 
"$(pwd)/DBuildTest/DyalogBuild.dyalog:/home/dyalog/
MyUCMDs/DyalogBuild.dyalog" \
  -v "$(pwd)/src:/src" \
  -v "$(pwd)/tests:/tests" \
  dytest
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Task 4: Run it (on macOS or Linux)

docker run --rm \
 -v 
"$(pwd)/DBuildTest/DyalogBuild.dyalog:/home/dyalog/
MyUCMDs/DyalogBuild.dyalog" \
  -v "$(pwd)/src:/src" \
  -v "$(pwd)/tests:/tests" \
  dytest
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Task 4: Run it (Windows PowerShell)

docker run --rm `
 -v 
"${PWD}/DBuildTest/DyalogBuild.dyalog:/home/dyalog/
MyUCMDs/DyalogBuild.dyalog" `
  -v "${PWD}/src:/src" `
  -v "${PWD}/tests:/tests" `
  dytest



% docker run --rm \                                
  -v "$(pwd)/DBuildTest/ {∘∘∘} /DyalogBuild.dyalog" \
  -v "$(pwd)/src:/src" \
  -v "$(pwd)/tests:/tests" \
  dytest
Link Warning: ⎕SE.Link.Create: .NET or .NetCore not available 
- watch defaults to 'ns'
Linked: # → /src

Rebuilding user command cache... done
All tests passed



Docker and GitHub Actions45

GitHub Actions



name: Run Dyalog APL Unit Tests

on:
  push:
    branches:
      - main  

jobs:
  run-dyalog:
    runs-on: ubuntu-latest

    steps:
    - name: Checkout code
      uses: actions/checkout@v2
      with:
        submodules: 'recursive'
        fetch-depth: 0

Which events trigger the Action?

What kind of O/S should the Action runner use?

Check out our repository

...including submodules

...pushes to the main branch

Use GitHub's "checkout" action



- name: Build custom Docker image
      run: docker build -t dytest .

    # ]dtest requires write access to /tests
    - name: Set permissions for /tests
      run: chmod 777 tests

    - name: Run unit tests
      run: |
        docker run --rm \
          -v "${{ github.workspace 
}}/DBuildTest/DyalogBuild.dyalog:/home/dyalog/MyUCMDs/DyalogBuild.dyalog" 
\
          -v "${{ github.workspace }}/src:/src" \
          -v "${{ github.workspace }}/tests:/tests" \
          dytest

Build container

Tweak permissions

Run container
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Task 5: Action!
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git add src/mysum.aplf

git commit -m 'Make a test fail'

git push origin main

Git cheat-sheet
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⬢ We executed our tests from the shell using LOAD

⬢ We ran our tests in a Docker container

⬢ We deployed our Docker container using a GitHub Action 

⬢ Now our every commit triggers a full test run.

Summary
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⬢ We executed our tests from the shell using LOAD

⬢ We ran our tests in a Docker container

⬢ We deployed our Docker container using a GitHub Action 

⬢ Now our every commit triggers a full test run.

Summary
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⬢ We executed our tests from the shell using LOAD

⬢ We ran our tests in a Docker container

⬢ We deployed our Docker container using a GitHub Action 

⬢ Now our every commit triggers a full test run.

Summary
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⬢ We executed our tests from the shell using LOAD

⬢ We ran our tests in a Docker container

⬢ We deployed our Docker container using a GitHub Action 

⬢ Now our every commit triggers a full test run.

Summary
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