
How I won the APL Problem Solving
Competition

Who? Andrea Piseri (andrea.piseri@gmail.com)

From? Università Degli Studi di Milano

When? 18 Oct 2023

About Me

Education
Maths student at Università Degli Studi di Milano
Abstract algebra
Mathematical logic
Computability

CS Hobbies
wrote ~50 lines of Python at age 12
learned C in University
programming language enthusiast (C/C++, Rust,
Haskell, APL, BQN)

My Journey With APL (and array
programming)

My Journey With APL (and array
programming)

First
encounter:

MATLAB in university

Yes, it’s technically an array language
Interpreted, dynamic
Weird syntax, this is nothing like C!

Back to C (for now)

Experiments with competitive programming
Appreciation for arrays!

My Journey With APL (and array
programming)

FP languages
Haskell from Tsoding’s
community
Composition patterns and
combinators
High information density
Similar to math notation

Language
comparisons Connor Hoekstra’s

Youtube channel
Encountered APL
Higher information density
Terser math notation

My Journey With APL (and array
programming)

Advent of Code December 2022

learn APL by solving problems with it
~1 new primitive per day
published my solutions on github and mastodon
finished days 1-20

MATLAB’s
new chance!

https://adventofcode.com
https://github.com/ap29600/aoc22
https://mastodon.uno/@andrea_piseri/109455339247740178

The Competition Problems

The Competition Problems

Part 1 Bioinformatics

Task 5: Reading frame translation
“real world” programming
two very different solutions

Part 2 Potpourri

Task 3: Time for a Change
induction!
opportunity for improvement

Task 1.5: Reading frame translation

Task 1.5: Reading frame translation
Write a function that, given the name of a file in FASTA
format, returns all the protein strings that can be trans-
lated from it, in all six reading frames.

FASTA format

>Rosalind_2748
ATCAGGCTACCGTGTTTGCGGACGGGGGCTTAATCT
CTTGTTGGCACAGCGGTGGCAGGAGGTCCCCGCCGA
...

Output

'MVMATGVIVLNTRMRVTNDSNFGARYRGTCP' ...
... 'MGL' 'MDRL' 'MRLPWSCLHIA'

Final structure

orf ← {crf⍤aas⊃⌽⊃readFASTA⍵}

readFASTA performs the IO
aas converts from DNA to list of reading frames
crf extracts the protein strings

Details

'$' are stop codons.
A protein string starts with 'M', ends before '$'.
Any 'M' not followed by '$' doesn’t start a protein.

'XXXMAAM$YMBB'
becomes:
'MAAM' 'M'

'XXXMAAMYMB'
becomes:
'MAAM' 'M' 'MB'

First Implementation of crf

Main Idea Solve for one sequence, map and flatten.

(a -> [b]) -> [a] -> [b]

⍝ utility: flat map modifier
_f ← {⊃,/⍺⍺¨⍵}
'abc'⍨_f ⍳5

'abcabcabcabcabc'

First Implementation of crf

Finding
Maximal
Chunks [Amino] -> [[Amino]]

('$'∘≠⊆⊢) 'AA$BB$XX'
AA BB XX

((-'$'≠⊢/)↓'$'∘≠⊆⊢) 'AABBXX'
AA BB

Split each sequence by '$'.
Drop the last split of sequences that don’t end in '$'.

First Implementation of crf

Suffixes
starting with

'M' [Amino] -> [[Amino]]

'M'∘(=⊂⊢) 'XXMAAAMBB'
MAAA MBBB

'M'∘(,⍨\⍤⌽(=⊂⊢)) 'XXMAAAMBB'
MBBB MAAAMBBB

⊂ makes partitions starting with 'M'.
Drops anything before the first 'M'.
,⍨\⍤⌽ concatenates the suffixes of the array.

Putting it all together

[[Amino]] -> [[Amino]]

crf ← {
p ← ((-'$'≠⊢/)↓'$'∘≠⊆⊢)_f⍵
∪'M'∘(,⍨\⍤⌽(=⊂⊢))_f p

}

Second Attempt at crf

Index
calculations

[[Amino]] -> ([Amino], [Int])

s d←(,/,(⊂(+\≢¨))),∘'$'¨'A$MB' 'CMD'
AMBM$MD$$ 5 11

Second Attempt at crf

Finding Begins
and Ends

s = 'AMBM$MD$$'
d = 5 11

i←⊃{↑⍺(⍵[1+⍵⍸⍺])}/'M$'(⍸=)¨⊂s
(3 6 8) (2 5 7 10 11)

Second Attempt at crf

Finding Begins
and Ends

s = 'AMBM$MD$$'
d = 5 11

i←⊃{↑⍺(⍵[1+⍵⍸⍺])}/'M$'(⍸=)¨⊂s
⍝ ⍺ ≡ 3 6 8 ; ⍵ ≡ 2 5 7 10 11

2 3 4

Second Attempt at crf

Finding Begins
and Ends

s = 'AMBM$MD$$'
d = 5 11

i←⊃{↑⍺(⍵[1+⍵⍸⍺])}/'M$'(⍸=)¨⊂s
3 6 8
5 7 10

b e←¯1+↓(~i[2;]∊d)/i
(5 7) (6 9)

Second Attempt at crf

Final Solution

crf ← {
s d←(,/,(⊂(+\≢¨))),∘'$'¨⍵
i←⊃{↑⍺(⍵[1+⍵⍸⍺])}/'M$'(⍸=)¨⊂s
b e←¯1+↓(~i[2;]∊d)/i
∪b↓¨e↑¨⊂s

}

Task 2.3: Time for a Change

Task 2.3: Time for a Change

Problem
statement Write a function that takes a list of denominations as

a left argument and a total value as a right argument,
and returns a matrix where each row represents a unique
combination of the elements of the left argument that
total the right argument.

In other words, find a non negative integer matrix r
with unique rows, maximising ≢r under the constraint
⍵∧.=r+.×⍺

Task 2.3: Time for a Change

Pruning

GCD(𝛼1, ⋯ , 𝛼𝑛)|𝜔 ⇔ ∃𝛽1, ⋯ , 𝛽𝑛 ∈ ℤ, 𝜔 =
𝑛

∑
𝑖=1

𝛼𝑖𝛽𝑖

Inductive base

0≠⍵|⍨∨/⍺: (0,≢⍺)⍴0
1=≢⍺: ⍪⍵÷⊃⍺

Avoid recursive calls
Base case is trivial

Task 2.3: Time for a Change

Inductive step

⍺≡1 2 3 ⋄ ⍵≡7

i←0,⍳⌊⍵÷a←⊃⌽⍺
0 1 2

Task 2.3: Time for a Change

Solving
subproblems

⍺≡1 2 3 ⋄ ⍵≡7 ⋄ i≡0 1 2 ⋄ (⍵-a×i)≡7 4 1

s←(⊂¯1↓⍺)∇¨⍵-a×i
7 0 4 0 1 0
5 1 2 1
3 2 0 2
1 3

Task 2.3: Time for a Change

Merging step

s,¨i
7 0 0 4 0 1 1 0 2
5 1 0 2 1 1
3 2 0 0 2 1
1 3 0

Task 2.3: Time for a Change

Final solution

makeChange ← {
0≠⍵|⍨∨/⍺: (0,≢⍺)⍴0
1=≢⍺: ⍪⍵÷⊃⍺
i←0,⍳⌊⍵÷a←⊃⌽⍺
s←(⊂¯1↓⍺)∇¨⍵-a×i
⊃⍪/s,¨i

}

Algorithmically better solution discussed on my blog

https://ap29600.github.io/apl_problemsolving_23.html

What I leaned

What I leaned

APL is not as opinionated as I thought.

direct code translation can work
functional patterns apply

Array
Programming

has been there all along

APL techniques apply to MATLAB, C++, etc.
It changes the way you think

	My Journey With APL (and array programming)
	The Competition Problems
	Task 1.5: Reading frame translation
	Task 2.3: Time for a Change
	What I leaned

