
An Implementation of APL 
Array Notation



Who am I?

• Student @ Saarland University

• Intern @ Dyalog Ltd.

• A C programmer enamored with APL's applications to mathematics

Blog: https://palaiologos.rocks

What if APL was made for 
solving abstract CS and 
mathematics problems?



Who am I?

Summer of 2020: Spring of 2023:

Learned about Array Programming in 2018 from IRC (#jsoftware).



My time at Dyalog
• APL Array notation:

• 62582⌶: Deserialise Array Notation to an APL array/object
• 62583⌶: Prettify Array Notation
• Found a problem with the formal specification

• ⎕DIFF: Automatic Differentiation.
• ⍛: Reverse Compose.
• Speed up: ⍸⍣¯1, N∘⊥⍣¯1⊢M
• Iverson's monadic dot product (e.g. -.× D computes the determinant)
• Obverse (f⍫g where f has inverse of g)
• Monadic ∨/∧ (demote / promote)

• More...



Array Notation?
• Implemented by BQN.
• Parentheses and brackets may contain many expressions
• Parentheses may be empty!
• Three basic constructs.

(1⋄2⋄'a'⋄⊢∘-\⍳5⋄'abc') ≡ 1 2 'a' (1 ¯2 3 ¯4 5) 'abc'
(each expression becomes an element in a new vector)

[[1 2 ⋄ 3 4] ⋄ [5 6 ⋄ 7 8]] ≡ 2 2 2⍴⍳8
(each expression becomes a major cell (of rank≥1) in a new array)

(name: 'Kamila' ⋄ birthday: '09-07-2004')
(namespace syntax)



Why Array Notation?

• Dyalog has been slowly moving away from workspaces and 
towards text-based source management.

• Easy to use SCM tools to manage your code.
• Easy to modify and inspect the code.
• …

• It is now possible to serialise and deserialise complex 
structures (imagine ]Repr on steroids).

• It is faster than just executing APL, allows for a reasonably 
formatted multiline array notation and ultimately makes 
teaching and using APL easier.



What makes the Array Notation fast?

• First and foremost: It is statically parseable!

n←a b c
n gets: a, b and c stranded together?
n gets: a and c applied to b?

n gets: c applied to b, and then applied to a?

Meanwhile: we know what (a⋄b⋄c) is! (Each expression becomes an element in 
a new vector. This is always a strand.)



What makes the Array Notation fast?
• The "fast execute" mechanism: Because the array notation is a 

subset of APL, we can assume/scan for certain things to 
determine the value of the expression without executing it.

• E.g.: Use 62582⌶ to evaluate constants:
x←⍕÷?⍨1000000⋄y←⍕{'''','''',⍨⎕a[(?10)↑?⍨10]}¨⍳2000⋄z←x,y,x,y,x,y

cmpx '62582⌶x' '⍎x'
62582⌶x → 2.5E¯3 | 0% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕
⍎x → 3.3E¯3 | +31% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕

cmpx '62582⌶y' '⍎y'
62582⌶y → 1.9E¯4 | 0% ⎕
⍎y → 5.1E¯3 | +2650% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕

cmpx '62582⌶z' '⍎z'
62582⌶z → 8.8E¯3 | 0% ⎕
⍎z → 2.0E¯1 | +2221% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕



User Story
• Scenario: Over 40MB of real-world text and numeric data in 

Dyalog component files stored as arrays, namespaces, etc...
• Problem: One must be able to periodically find differences 

between old and new versions of the database and make it 
accessible to software that is not Dyalog APL.

• Possible solution: export as JSON? Develop a custom format?
• Caveat:

DOMAIN ERROR: the right argument cannot be converted
⎕JSON 2 2⍴4
∧



User Story
• Actual solution: Just use the APL Array Notation!
• Issue: Current implementation in ⎕SE is problematic:

• Poor performance characteristics
• Not always correct
• Does not handle certain edge cases
• …

• Solution: A fast deserialiser and serialiser for the Array 
Notation written in C and integrated into the interpreter.



User Story
cmpx '⎕SE.Dyalog.Array.Deserialise data'

8.9E0 ⍝ 8s 900ms
cmpx '62582⌶data'

5.6E¯1 ⍝ 560ms
wsreq '⎕SE.Dyalog.Array.Deserialise data'

557119736 ⍝ 557MB!
wsreq '62582⌶data'

31706960 ⍝ 31MB
⎕size 'data'

23085216 ⍝ 23MB



User Story
• Not so simple: One needs to serialise the Array Notation first.

> We have installed Dyalog on a powerful machine and set MAXWS to 100G. 
The input array was 5MB, and the output file 9MB. ⎕SE's Serialiser took 55 
seconds to run. So, that needed about 16GB of workspace...

• The ⎕SE Serialiser is far from perfect, but the task it's 
performing is remarkably complex:

• When do we use APL strands - a b c - and when do we use the Array 
Notation syntax - (a⋄b⋄c)?

• How do we format the resulting array notation?
• How to represent tricky APL objects (tacit functions, dfns, scripted 

namespaces, tradfns, etc...)?
• Due to data loss bugs in the past, the result is always cross-checked.



A dive into ⎕SE

f←'+'∘- ⋄ g←+∘-
f

+∘-
g

+∘-
⍝ ¯\_(⍨)_/¯

Turning APL objects into expressions 
that result in them is difficult.

Surprisingly: All the complex logic that 
handles this is not the bottleneck!

> Use the right tool for the job

To no surprise: APL is the right tool 
to write a serialiser. How certain 
data is represented internally by the 
C code is very different to how it 
appears to the APL programmer.

However: APL is not the right tool to 
write a formatter/prettifier!



A dive into ⎕SE

• C: Inherently scalar, rarely overcomputes. Formatting an Array 
Notation string does not call for array logic and is inherently a 
serial problem.

• After replacing the formatter in the serialiser code with the 
62583 I-beam, the memory usage went down by more than an 
order of magnitude. The speed was doubled.

• APL: Array-oriented, often overcomputes. Processing performed 
as many small steps spanning the whole string.



Briefly about ⎕DIFF

• Based on Taylor series, samples a few points around x+∆h.

• Implementation detail: more points are being considered 
increasing accuracy but worsening the behaviour around 
singularities.

• More accurate than the central difference method (definition of 
derivative).



Briefly about ⎕DIFF

((1∘○)⎕diff - 2∘○) 0.3 ⍝ ⎕FR 645
1.950931461E¯8

((1∘○)⎕diff - 2∘○) 0.3 ⍝ ⎕FR 1287
7.33843311E¯26

Future ideas:
• Dual numbers (hypercomplex number system, a + bε where ε^2 = 0 

and ε ≠ 0).
• Complex derivatives.
• Numerical integration (Tanh-Sinh quadrature by default, Gauss-

Legendre quadrature for smooth integrands)



Briefly about ⎕DIFF: Dual numbers

Crucial: a = f(x), b = f'(x), c = g(x), d = g'(x)



Briefly about ⎕DIFF: Complex derivatives

Many ideas:
• Frechet derivative.
• Complex Finite difference stencils.
• ...

Simple proof of concept: Use Cauchy-Riemann equations!
(Complex Variables with Applications, Jeremy Orloff, MIT)



Briefly about ⎕DIFF: CR equations
First step: f(x + iy) = u(x, y) + iv(x, y)

Definition: f is complex differentiable at a complex point if and 
only if the partial derivatives of u and v satisfy the Cauchy-
Riemann equations at that point.

cmpxdiff←{
f←⍺⍺ ⋄ re←9○⍵ ⋄ im←0J1×11○⍵
dudx←{9○f ⍵+im}⎕DIFF re
dvdx←{11○f ⍵+im}⎕DIFF re
dudx+0J1×dvdx

}



Briefly about ⍛

(f∘g) ⍵ ⇔ f (g 
⍵)
⍺ (f∘g) ⍵ ⇔ ⍺ f (g 
⍵)

(f⍛g) ⍵ ⇔ (f ⍵) g ⍵
⍺ (f⍛g) ⍵ ⇔ (f ⍺) g ⍵



Briefly about ⍛

⍺ (f⍛g∘h) ⍵
Dyalog APL/S-64 Version 20.0.47746
Serial number: 201845
Wed Sep 27 20:13:12 2023

5 ⍳⍛×∘| 5 ¯8 ¯2 ¯5 3
5 16 6 20 15

⍝ I don't like these:
5 (⍳⍤⊣×|⍤⊢) 5 ¯8 ¯2 ¯5 3

5 16 6 20 15
5 ×⍨∘⍳⍨∘| 5 ¯8 ¯2 ¯5 3

5 16 6 20 15



Thoughts? Questions?

z←{(⍎'(',')⍣¯1',⍨((⊂'+⊢×')(1↓∘,,⍤0)⍕¨⌽1↓⍵),⍥∊'+' (⍕⊃⍵) '×⊢')0}

z 1 2 3 4 5 6 (6+⊢×5+⊢×4+⊢×3+⊢×2+1×⊢) ¯1.491797988
¯1.491797988 1.580688469E¯9
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