
An Implementation of APL
Array Notation

Who am I?

• Student @ Saarland University

• Intern @ Dyalog Ltd.

• A C programmer enamored with APL's applications to mathematics

Blog: https://palaiologos.rocks

What if APL was made for
solving abstract CS and
mathematics problems?

Who am I?

Summer of 2020: Spring of 2023:

Learned about Array Programming in 2018 from IRC (#jsoftware).

My time at Dyalog
• APL Array notation:

• 62582⌶: Deserialise Array Notation to an APL array/object
• 62583⌶: Prettify Array Notation
• Found a problem with the formal specification

• ⎕DIFF: Automatic Differentiation.
• ⍛: Reverse Compose.
• Speed up: ⍸⍣¯1, N∘⊥⍣¯1⊢M
• Iverson's monadic dot product (e.g. -.× D computes the determinant)
• Obverse (f⍫g where f has inverse of g)
• Monadic ∨/∧ (demote / promote)

• More...

Array Notation?
• Implemented by BQN.
• Parentheses and brackets may contain many expressions
• Parentheses may be empty!
• Three basic constructs.

(1⋄2⋄'a'⋄⊢∘-\⍳5⋄'abc') ≡ 1 2 'a' (1 ¯2 3 ¯4 5) 'abc'
(each expression becomes an element in a new vector)

[[1 2 ⋄ 3 4] ⋄ [5 6 ⋄ 7 8]] ≡ 2 2 2⍴⍳8
(each expression becomes a major cell (of rank≥1) in a new array)

(name: 'Kamila' ⋄ birthday: '09-07-2004')
(namespace syntax)

Why Array Notation?

• Dyalog has been slowly moving away from workspaces and
towards text-based source management.

• Easy to use SCM tools to manage your code.
• Easy to modify and inspect the code.
• …

• It is now possible to serialise and deserialise complex
structures (imagine]Repr on steroids).

• It is faster than just executing APL, allows for a reasonably
formatted multiline array notation and ultimately makes
teaching and using APL easier.

What makes the Array Notation fast?

• First and foremost: It is statically parseable!

n←a b c
n gets: a, b and c stranded together?
n gets: a and c applied to b?

n gets: c applied to b, and then applied to a?

Meanwhile: we know what (a⋄b⋄c) is! (Each expression becomes an element in
a new vector. This is always a strand.)

What makes the Array Notation fast?
• The "fast execute" mechanism: Because the array notation is a

subset of APL, we can assume/scan for certain things to
determine the value of the expression without executing it.

• E.g.: Use 62582⌶ to evaluate constants:
x←⍕÷?⍨1000000⋄y←⍕{'''','''',⍨⎕a[(?10)↑?⍨10]}¨⍳2000⋄z←x,y,x,y,x,y

cmpx '62582⌶x' '⍎x'
62582⌶x → 2.5E¯3 | 0% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕
⍎x → 3.3E¯3 | +31% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕

cmpx '62582⌶y' '⍎y'
62582⌶y → 1.9E¯4 | 0% ⎕
⍎y → 5.1E¯3 | +2650% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕

cmpx '62582⌶z' '⍎z'
62582⌶z → 8.8E¯3 | 0% ⎕
⍎z → 2.0E¯1 | +2221% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕

User Story
• Scenario: Over 40MB of real-world text and numeric data in

Dyalog component files stored as arrays, namespaces, etc...
• Problem: One must be able to periodically find differences

between old and new versions of the database and make it
accessible to software that is not Dyalog APL.

• Possible solution: export as JSON? Develop a custom format?
• Caveat:

DOMAIN ERROR: the right argument cannot be converted
⎕JSON 2 2⍴4
∧

User Story
• Actual solution: Just use the APL Array Notation!
• Issue: Current implementation in ⎕SE is problematic:

• Poor performance characteristics
• Not always correct
• Does not handle certain edge cases
• …

• Solution: A fast deserialiser and serialiser for the Array
Notation written in C and integrated into the interpreter.

User Story
cmpx '⎕SE.Dyalog.Array.Deserialise data'

8.9E0 ⍝ 8s 900ms
cmpx '62582⌶data'

5.6E¯1 ⍝ 560ms
wsreq '⎕SE.Dyalog.Array.Deserialise data'

557119736 ⍝ 557MB!
wsreq '62582⌶data'

31706960 ⍝ 31MB
⎕size 'data'

23085216 ⍝ 23MB

User Story
• Not so simple: One needs to serialise the Array Notation first.

> We have installed Dyalog on a powerful machine and set MAXWS to 100G.
The input array was 5MB, and the output file 9MB. ⎕SE's Serialiser took 55
seconds to run. So, that needed about 16GB of workspace...

• The ⎕SE Serialiser is far from perfect, but the task it's
performing is remarkably complex:

• When do we use APL strands - a b c - and when do we use the Array
Notation syntax - (a⋄b⋄c)?

• How do we format the resulting array notation?
• How to represent tricky APL objects (tacit functions, dfns, scripted

namespaces, tradfns, etc...)?
• Due to data loss bugs in the past, the result is always cross-checked.

A dive into ⎕SE

f←'+'∘- ⋄ g←+∘-
f

+∘-
g

+∘-
⍝ ¯_(⍨)_/¯

Turning APL objects into expressions
that result in them is difficult.

Surprisingly: All the complex logic that
handles this is not the bottleneck!

> Use the right tool for the job

To no surprise: APL is the right tool
to write a serialiser. How certain
data is represented internally by the
C code is very different to how it
appears to the APL programmer.

However: APL is not the right tool to
write a formatter/prettifier!

A dive into ⎕SE

• C: Inherently scalar, rarely overcomputes. Formatting an Array
Notation string does not call for array logic and is inherently a
serial problem.

• After replacing the formatter in the serialiser code with the
62583 I-beam, the memory usage went down by more than an
order of magnitude. The speed was doubled.

• APL: Array-oriented, often overcomputes. Processing performed
as many small steps spanning the whole string.

Briefly about ⎕DIFF

• Based on Taylor series, samples a few points around x+∆h.

• Implementation detail: more points are being considered
increasing accuracy but worsening the behaviour around
singularities.

• More accurate than the central difference method (definition of
derivative).

Briefly about ⎕DIFF

((1∘○)⎕diff - 2∘○) 0.3 ⍝ ⎕FR 645
1.950931461E¯8

((1∘○)⎕diff - 2∘○) 0.3 ⍝ ⎕FR 1287
7.33843311E¯26

Future ideas:
• Dual numbers (hypercomplex number system, a + bε where ε^2 = 0

and ε ≠ 0).
• Complex derivatives.
• Numerical integration (Tanh-Sinh quadrature by default, Gauss-

Legendre quadrature for smooth integrands)

Briefly about ⎕DIFF: Dual numbers

Crucial: a = f(x), b = f'(x), c = g(x), d = g'(x)

Briefly about ⎕DIFF: Complex derivatives

Many ideas:
• Frechet derivative.
• Complex Finite difference stencils.
• ...

Simple proof of concept: Use Cauchy-Riemann equations!
(Complex Variables with Applications, Jeremy Orloff, MIT)

Briefly about ⎕DIFF: CR equations
First step: f(x + iy) = u(x, y) + iv(x, y)

Definition: f is complex differentiable at a complex point if and
only if the partial derivatives of u and v satisfy the Cauchy-
Riemann equations at that point.

cmpxdiff←{
f←⍺⍺ ⋄ re←9○⍵ ⋄ im←0J1×11○⍵
dudx←{9○f ⍵+im}⎕DIFF re
dvdx←{11○f ⍵+im}⎕DIFF re
dudx+0J1×dvdx

}

Briefly about ⍛

(f∘g) ⍵ ⇔ f (g
⍵)
⍺ (f∘g) ⍵ ⇔ ⍺ f (g
⍵)

(f⍛g) ⍵ ⇔ (f ⍵) g ⍵
⍺ (f⍛g) ⍵ ⇔ (f ⍺) g ⍵

Briefly about ⍛

⍺ (f⍛g∘h) ⍵
Dyalog APL/S-64 Version 20.0.47746
Serial number: 201845
Wed Sep 27 20:13:12 2023

5 ⍳⍛×∘| 5 ¯8 ¯2 ¯5 3
5 16 6 20 15

⍝ I don't like these:
5 (⍳⍤⊣×|⍤⊢) 5 ¯8 ¯2 ¯5 3

5 16 6 20 15
5 ×⍨∘⍳⍨∘| 5 ¯8 ¯2 ¯5 3

5 16 6 20 15

Thoughts? Questions?

z←{(⍎'(',')⍣¯1',⍨((⊂'+⊢×')(1↓∘,,⍤0)⍕¨⌽1↓⍵),⍥∊'+' (⍕⊃⍵) '×⊢')0}

z 1 2 3 4 5 6 (6+⊢×5+⊢×4+⊢×3+⊢×2+1×⊢) ¯1.491797988
¯1.491797988 1.580688469E¯9

	An Implementation of APL Array Notation
	Who am I?
	Who am I?
	My time at Dyalog
	Array Notation?
	Why Array Notation?
	What makes the Array Notation fast?
	What makes the Array Notation fast?
	User Story
	User Story
	User Story
	User Story
	A dive into ⎕SE
	A dive into ⎕SE
	Briefly about ⎕DIFF
	Briefly about ⎕DIFF
	Briefly about ⎕DIFF: Dual numbers
	Briefly about ⎕DIFF: Complex derivatives
	Briefly about ⎕DIFF: CR equations
	Briefly about ⍛
	Briefly about ⍛
	Thoughts? Questions?

