JDYALOCGC

Elsinore 2023

TP1: Testing APL Systems

Michael Baas, Morten Kromberg, Stefan Kruger

Goals

¢ Review what we know about existing tools and
frameworks for testing

¢ Present some techniques that Dyalog is actually using
¢ Share our collective experience

¢ Discuss requirements for potential future frameworks
or tools that Dyalog (or the community) might develop

Testing APL Systems i

Testing APL Systems

13:30-14:30 (ish, hopefully a bit less)
Session 1: Introduction (Morten)

Define Terminology

Review Some Existing Frameworks & Actual Tests

Exercise 1:

Use "Tester" package to write a test
Testing APL Systems

14:45-15:45

Session 2: DTest (Michael)

Basics

Demo
DIY
Bonus: Automation

Bonus: Code Coverage

Exercise: Write a test with DTest for
coolStat's "Count" function

Testing APL Systems

16:00-17:00
Session 3: Automation (Stefan)

The case for automation
Testing on the command line
Running tests in Docker

Automation with GitHub Actions

Exercise: Deploy test automation to GitHub

Testing APL Systems

Terminology & Techniques

Types of Testing Techniques
Unit Test-driven Development
Regression Mocking (fakes & stubs)
Integration Continuous Integration
Data Driven GUI Testing (Selenium)

Code Coverage
Testing APL Systems i

Unit testing

Article Talk

From Wikipedia, the free encyclopedia

In computer programming, unit testing is a software testing method by which individual
units of source code—sets of one or more computer program modules together with
associated control data, usage procedures, and operating procedures—are tested to
determine whether they are fit for use.l'! It is a standard step in development and
implementation approaches such as Agile.

Procedural programming | edit]

In procedural programming, a unit could be an entire module, but it is more commonly an individual function
or procedure.

Object-oriented programming [edit]

In object-oriented programming, a unit is often an entire interface, such as a class, or an individual

method.[! By writing tests first for the smallest testable units, then the compound behaviors between those,

7 one can build up comprehensive tests for complex applications.!

Regression testing

Article Talk

From Wikipedia, the free encyclopedia

This article is about software development. For the statistical analysis process, see Regression analysis.

Regression testing (rarely, non-regression testing!'l) is re-running functional and non-functional tests to
ensure that previously developed and tested software still performs as expected after a change.l! If not, that
would be called a regression.

Changes that may require regression testing include bug fixes, software enhancements, configuration
changes, and even substitution of electronic components (hardware).l’] As regression test suites tend to
grow with each found defect, test automation is frequently involved. The evident exception is the GUIs
regression testing, which normally must be executed manually. Sometimes a change impact analysis is
performed to determine an appropriate subset of tests (non-regression analysist*).

Testing APL Systems

Integration testing (sometimes called integration and testing, abbreviated
I&T) is the phase in software testing in which the whole software module is tested
or if it consists of multiple software modules they are combined and then tested
as a group. Integration testing is conducted to evaluate the compliance of a
system or component with specified functional requirements.['! It occurs after unit
testing and before system testing. Integration testing takes as its input modules
that have been unit tested, groups them in larger aggregates, applies tests
defined in an integration test plan to those aggregates, and delivers as its output
the integrated system ready for system testing.[?]

Testing APL Systems

i= Data-driven testing XA 3 languages

Article Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia

Data-driven testing (DDT), also known as table-driven testing or parameterized testing, is a software
testing methodology that is used in the testing of computer software to describe testing done using a table of
conditions directly as test inputs and verifiable outputs as well as the process where test environment
settings and control are not hard-coded.!"!?! In the simplest form the tester supplies the inputs from a row in
the table and expects the outputs which occur in the same row. The table typically contains values which
correspond to boundary or partition input spaces. In the control methodology, test configuration is "read"
from a database.

Introduction [edit]

In the testing of software or programs, several methodologies are available for implementing this testing.
Each of these methods co-exist because they differ in the effort required to create and subsequently
maintain. The advantage of Data-driven testing is the ease to add additional inputs to the table when new
partitions are discovered or added to the product or system under test. Also, in the data-driven testing
process, the test environment settings and control are not hard-coded. The cost aspect makes DDT cheap
for automation but expensive for manual testing.

10

Testing APL Systems

Test-driven development

Article Talk

From Wikipedia, the free encyclopedia

Test-driven development (TDD) is a software development process relying on
software requirements being converted to test casegbefore software is fully

developed] and tracking all software development by repeatedly testing the

software against all test cases. This is as opposed to software being developed
first and test cases created later.

Software engineer Kent Beck, who is credited with having developed or
"rediscovered"l'! the technique, stated in 2003 that TDD encourages simple
designs and inspires confidence.?!

Test-driven development is related to the test-first programming concepts of
extreme programming, begun in 1999, ! but more recently has created more
general interest in its own right.[]

Programmers also apply the concept to improving and debugging legacy code
developed with older techniques.”!

11

Testing APL Systems

Test-driven development cycle [edit]

The following sequence is based on the book Test-Driven Development by Example:”]

1. Add a test . =
The adding of a new feature begins by writing a test that passes iff the feature's w) (;‘ &))
specifications are met. The developer can discover these specifications by asking y A ¢
about use cases and user stories. A key benefit of testl-c.inven develc.Jprlne.nt is that it @\——/ >
makes the developer focus on requirements before writing code. This is in contrast Joes
with the usual practice, where unit tests are only written after code. A graphical representation of the &

test-driven development lifecycle

2. Run all tests. The new test should fail for expected reasons

This shows that new code is actually needed for the desired feature. It validates

that the test harmness is working correctly|

It rules out the possibility that the new test is flawed and will always pass.

3. Write the simplest code that passes the new test
Inelegant or hard code is acceptable, as long as it passes the test. The code will be honed anyway in Step 5. No code
should be added beyond the tested functionality.

4. All tests should now pass

If any fail, the new code must be revised until they pass. This ensures the new code meets the test requirements and does

not break existing features.

5. Refactor as needed, using tests after each refactor to ensure that functionality is preserved

Code is refactored for readability and maintainability. In particular, hard-coded test data should be removed. Running the
test suite after each refactor helps ensure that no existing functionality is broken.

12

Testing APL Systems

= M()Ck Object Mp 15 languages v

Article Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia

In object-oriented programming, mock objects are simulated objects that mimic the behaviour of real objects in
controlled ways, most often as part of a software testing initiative. A programmer typically creates a mock object to test
the behaviour of some other object, in much the same way that a car designer uses a crash test dummy to simulate the
dynamic behaviour of a human in vehicle impacts. The technique is also applicable in generic programming.

Motivation [edi]

In a unit test, mack objects can simulate the behavior of complex, real objects and are therefore useful when a real
object is impractical or impossible to incorporate into a unit test. If an object has any of the following characteristics, it
may be useful to use a mock object in its place:

= the object supplies non-deterministic results (e.g. the current time or the current temperature);

« it has states that are difficult to create or reproduce (e.g. a network error);

e it is slow (e.g. a complete database, which would have to be prepared before the test);

« it does not yet exist or may change behavior;

« it would have to include information and methods exclusively for testing purposes (and not for its actual task).

For example, an alarm clock program which causes a bell to ring at a certain time might get the current time from a time
service. To test this, the test must wait until the alarm time to know whether it has rung the bell correctly. If a mock time
service is used in place of the real time service, it can be programmed to provide the bell-ringing time (or any other time)
regardless of the real time, so that the alarm clock program can be tested in isolation.

13

Testing APL Systems

In software engineering, continuous integration (Cl) is the practice of merging all
developers' working copies to a shared mainline several times a day.l'l Nowadays it is

typically implemented in such a way that it triggers an automated build with testing] Grady

Booch first proposed the term Cl in his 1991 method,?] although he did not advocate
integrating several times a day. Extreme programming (XP) adopted the concept of Cl and
did advocate integrating more than once per day — perhaps as many as tens of times per
day.l’!

14

Testing APL Systems

In software engineering, code coverage is a percentage measure of the degree to which the source code of
a program is executed when a particular test suite is run. A program with high test coverage has more of its
source code executed during testing, which suggests it has a lower chance of containing undetected
software bugs compared to a program with low test coverage.!'?] Many different metrics can be used to
calculate test coverage. Some of the most basic are the percentage of program subroutines and the
percentage of program statements called during execution of the test suite.

Test coverage was among the first methods invented for systematic software testing. The first published
reference was by Miller and Maloney in Communications of the ACM, in 1963.1%]

Coverage criteria [edi]

To measure what percentage of code has been executed by a test suite, one or more coverage criteria are
used. These are usually defined as rules or requirements, which a test suite must satisfy.[*]

Basic coverage criteria [edit]
There are a number of coverage criteria, but the main ones are:°!

+ Function coverage — has each function (or subroutine) in the program been called?
« Statement coverage — has each statement in the program been executed?
« Edge coverage — has every edge in the control-flow graph been executed?

« Branch coverage — has each branch (also called the DD-path) of each control structure (such as in if
and case statements) been executed? For example, given an if statement, have both the frue and
false branches been executed? (This is a subset of edge coverage.)

« Condition coverage — has each Boolean sub-expression evaluated both to frue and false? (Also called
predicate coverage.)

What about primitives
with switches "built in"?

x<|+y

Test with y positive,
negative and zero?

Code coverage is
necessary but NOT
sufficient.

15

Testing APL Systems

Test Frameworks for APL

"Unit Test" Frameworks Other Test Frameworks

https://github.com/Gianfrancoalongi/APLUnit DTest (DyalogTest) — an internal tool used at
Dyalog, that is included with Dyalog APL

A "classical" Unit Test framework, inspired by non-
APL frameworks davin-Tester — A Tatin Package by Davin Church

used to test many of Kai's tools

A more pragmatic and APL-friendly approach.

aplteam-CodeCoverage — Tatin package for
measuring code coverage

Do you/we know of others?

16 Testing APL Systems

https://github.com/Gianfrancoalongi/APLUnit
https://xpqz.github.io/learnapl/testing.html

<>

https://github.com/
Gianfrancoalongi/APLUnit

rErErErErSrSriric-lein |

Code @ lssues 7

[Files

F master -

Q. Gotofile

Pages

.gitignore
Demo.dyalog
Demo_tests.dyalog
Empty_tests.dyalog
README.md
UT.dyalog
UTFile.dyalog
UTTests2_tests.dyalog
UT_tests.dyalog

requirement_specificati...

:NameSpace Demo_tests

v E*cnunt_comments_TEST;iﬂ:J{

input+=0 1 2/7<'int a;’

input,+1 2/7<"// this is &8 comment’
input,+<' // comment with leading blank'
#.UT.expect+0 0 0,1 2,1

I+# . Demo.count_comments input

v

17 :EndNameSpace

1% pull requests

® actions [projects [wiki @ Security |+ Insights

APLUnit / Demo_tests.dyalog (&

G Gianfrancoalongi Added demo files for the coverage of a full file

| Code | Blame 32 lines (26 loc) - 722 Bytes

Bow o e

wota o= om o

[I R I R R A S]
@M e om W e W R @

21

:MameSpace Demo_tests

7 + count_zerc_comments_from_no_input_TEST
#.UT.expect « @
I « #.Demo.count_comments &

v

¥ I + count_zero_comments_from_single_normal_line_TEST
#.UT.expect « @
Z « #.Demo.count_comments ‘int a;’

v

T I + count_one_comment_from_single_line TEST
#.UT.expect « 1
I + #.Demo.count_comments °//this is & comment®

v

7 I + count_one_comment_which_has_leading_whitespace TEST
#.UT.expect « 1

I + #.Demo.count_comments ° //this is a comment'

7 I + count_no_comments_for_a_blank_line_TEST
#.UT.expect « @
Z « #.Demo.count_comments

7 I + count_multiple_comments_amongst_lines_TEST
#.UT.expect « 2
I + #.Demo.count_comments °//first comment® '//second comment'

:EndNameSpace

https://xpgz.github.io/

learnapl/testing.html

:Namespace unittest
010 « O
run<{
tests « 'test_.+'[JS'&'ONL ~3
O=#tests: 'no tests found'
t{a, ('."'/~30-%a),wd>'[FAIL]' '[OK]'}#ttests (& tests, ' 8')
}

:EndNamespace

unittest.test_upper«{'FO0'=#.upper 'foo'}

18

Testing APL Systems

https://xpqz.github.io/learnapl/testing.html

https://xpqz.github.io/learnapl/testing.html

... also contains a "framework" for data-driven testing:

:Namespace datatest

010 +« 0
_tESt*{{Fffm}EEﬂ Oroa/ 1451tw}
rune{ 8 « -- ns containing functions to be tested

params + '_"(2C-)""[A_]+_testdata’'[Js’'&'[NLT2.1 R https://aplcart.info/?q=ZE2XRER
O=Zparams: 'no test parameter sets found'

funs + 27471451 tparams A Corresponding functions defined
testable + funs/~funsew.[JNL™3
result*wo{(a.2u) test sw,' testdata'} testable a Run the tests
t{a, (. /730-2a),'[",(s+/w), /" ,(52w),] }#ttestable result A Format
}
:EndNamespace

datatest.split_testdata+=(' * ('hello world') ('hello’ "wor1d')}) ('," ('hello,wor1d’'} ('hell
datatest.isupper_testdata+(e ('FO0") 1) (& ('Foo') 0) (& (,'F') 1) A monadic function

19

Testing APL Systems

https://xpqz.github.io/learnapl/testing.html

Some Recent QA we have written...

Ullu: Testing APL primitives
Kamila's tests
Link Testing

Selenium

(Michael will show some examples based on DTest in the next section)

20

Testing APL Systems

L

21

5 https://github.com/Dyalog/ullu

= readme.md

ullu

I A test suite to test APL Primitives.

& Whatis ullu? #

Ullu is a QA for DyalogAPL (can be used to test any APL) which tests specifically the functionality of primitives.

Coverage @

o Available Tests @

* floor (monadic |)

* index of (dyadic 1)

* magnitude (monadic |)
* membership (dyadic €)
s residue (dyadic |)

Ullu

ld & Comment

:Mamespace unittest

GetTests«{ (@ w is a ref to a namespace containing functions called test *
tests«'test .+ '[|S & w.[JNL "3
tests«('."', *dw)e, “tests

tests

FAIL_OK«'[FAIL]" "[OK]" @ 1l+bool will give fail and ok on 8 and 1
@ Pretty print test result
PPTestResult+«{w[2], w[3], ": ", FAIL_OK[1+w[1]]}

V retData Assert r ;r;tID;tCmt @) to output result of tests
> (tID tCmt)<tData
JRL<rl [E) Reset [JRL after each test
:If (~r)Astop
PPTestResult r tID tCmt
*Stopping on failure of:’ [JSIGNAL 509
:EndIf
:If verbose
PPTestResult r tID tlmt
:Elself ~rVstop
PPTestResult r tID tCmt
:EndIf

22

23

ullu / tests / magnitude.apln i

@ sloorush fix typo in magnitude

| Code | Blame 116 lines (99 loc) - 5.46 KB

W pa

=Rt =R - I <1

[y

12
13
14
15
16
17
13
19

21
22
23
24
25

[E] This Mamespace includes tests for the function Magnitude which is represented by Monadic stile(])
[3] Magnitude:

B ¥ may be any numeric array. R is numeric composed of the absolute (unsigned) values of Y.
[Z] Mote that the magnitude of a complex number a+b is defined to be v(&“2+b"2).

:Mamespace magnitude

I Assert«#.unittest.Assert I

@] Run Variations of each test with normal, empty and multiple shaped data

TV tRes«tData RunVariations exp ;actualR;actualRE;expectedRh;left;right;res;tID;tCmt;p;shape;shapelid;actualRs
(expectedR plesxp
(tID tCmt)«tData
tRes«&

5] normal

actualh=|p

tRes ,+tData Assert expectedFtEactualRl

3] empty
actualRE<|(@pp) (3] B in the shape means we have no elements in the array, i.e. it's empty.
tRes,«('Empty',tID) tCmt Assert -E}Eactua]FtEI

[Z] different shapes
shape«?(?4) /4
actuslRs«| (shapepactuzlR)
| tRes,«<('Multiple',tID) tlmt Assert (shapepexpectedR)=actualRS|

J test_iota_ubar — O x
File Edit 5Syntax Refacter View

S €A & 0| search... X v|%h % fa | Bl

[o] f~test_iota_ubar;0I0:;=;b; ;dii : ; ;

[1] 010+

[2] ~{0+"'Test #',(%1),"' failed: ', Vi I

[3] ~{ <guw:(tw), & w}

[4] +

[5] - I#.invga.iota_ubar.cases

[6] :For :In - S— - S — — — - S — - -

[7] E Oio+d.010 “J iota_ubar = O X

[8] L Tf ='ak _ , _

[9] :If (#.invga.iota_ubar.refgis 1) @ ¢ :EndIf File Edit Syntax Refactor View

[10] iElself ='error =

[11] -

[12] :Trap o #.invga.iota_ubar.ref] +«0 ¢ :EndTrap

[13] :Trap & 1% - & <0 ¢ :EndTrap

[14] (If =) ¢ ¢ :EndIf

[15] | tElse ¢ 'Invalid unit test type. 'SIGNAL ¢ :EndLlf

[1e6] =+

[17] |l :EndFor

[18] ~(7i)," tests ok. u
ue:

|_
m

=
1]

Function Pos: 0/19,1

a
8
a
a
a
o

|_
TR]

MNested Array Pos: 0/24,0

2J test invga_pot - o x| 3 i|‘|‘-f'I:!|a_FICI‘t -] x

File Edit Syntax Refactor View |
ZE € A & @ |[search... < v % na|Eal ; Eile Edit Syntax Refactor View
EH DtEESt‘imqa‘pOt:DI:: ie2iaibiallsdsis imsg; ; gE EE € @ ||5earch... w oo | % g Aa | fAal
[21 +{0«'Test #',(5i)," failed: ', o, } (
I[3] ~{ <Fwe tw), 3 b

[%] -

[5] + I¥.invga.pot.cases

[e] :For d :In

I[71] E Oro-d.010

[8] - (I (e, Jv.=d.0ONL-1

I[91] +d.l{d.a)

i[10] ~d.1(d.b)

I[11] :If # @ ¢ :Endlf

:[12] iElse

[13] ~()

[14] ~(d.b)

[15] (If # & ¢ :EndIf

[161 | :EndIf

[17] ++

[18] | :EndFor

[19] ~(%i)," tests ok.

| Functien Pos: 0/20,1

- — -

Link Testing

| &) DSELinkTesttest_basic in C/Devit/Link/Test/test_basic.aplf = O x

assert 'test’

File Edit Syntax Refactor NView
EE € A & O |[search... x v|% % H s & *
[0] bk+test_basic{folder name);_jacibcicbiemicvifile;foojgoosgoafilesling
[1] "link issue #265'assert'0=0ONC'‘'unlikelyname’""’
[2] name [ONS *°
[3] (¢name) OSE.Link.Fix'res+unlikelyname’ ‘res+'‘'unlikelyname''' & reph
[%] "link issue #265'assert’'3=0NC name,''.unlikelyname'""’
[5] ‘Link izsue #265'assert’'‘unlikelyname’'=" name,’ ' .unlikelyname’
[&] OEX name
[7]
[8] 3 OMKDIR Retry-folder
[9]
[10] opts+INS""
[11] opts.beforeRead+TESTNS, ' .onBasicRead’
[12] opts.beforeWrite«TESTNS, ' .onBasicWrite'
[13] opts.customExtensions+'charmat' ‘charvec'
[14] opts.watch+'both’
[15] z+opts LinkCreate name folder
[1&] I ﬂssert'1=CountLink§;1
[17] [ink+=0SE.Link.Links
[18] ns+#ename
[19]
[20] A Create a monadic function
[21] _+{efoo+' r+foo x' ' x x')QNPUT folder,'/foo.dyalog'
[22] assert ' foosns. ONR "'foo''"' "ms.0OFX tfoo'
[23] A Create & niladic / non-explicit function
[2%] _+{enil+" nil" ' 2+2"}QNPUT folder,'/nil.dyalog’
[25] assert'nil=ns. ONR "'nil'"" "ms.0OFX tnil’
[26]
[27] g Create an array
[28] _+~(e'["'one'" 1' ""'two'" 2]')QNPUT o2file+folder,'fone.apla’
[29] assert’'(2 2p"'one’" 1 "'two'' 2)=ns.onel’
2 Pos; 0/196,1

_Funcﬂon

| 12J OSE.LinkTesttest_basic in Ci/Devt/Link/Test/test_basic.aplf — O ®
File Edit Syntax Refactor NView

EE € A & O |[search... x v|% % H s & *

[o] bk+test_basic{folder name);_jacibcicbiemicvifile;foojgoosgoafilesling
[1] "link issue #265'assert'0=0ONC'‘'unlikelyname’""’

[2] name [N§ "'

[3] (¢name) OSE.Link.Fix'res+unlikelyname’ ‘res+'‘'unlikelyname''' & reph
[%] "link issue #265'assert’'3=0NC name,''.unlikelyname'""’

[5] ‘Link izsue #265'assert’'‘unlikelyname’'=" name,’ ' .unlikelyname’

[&] OEX name

[7]

[8] 3 OMKDIR Retry-folder

[9]

[10] opts+[NS""

[11] opts.beforeRead+TESTNS, ' .onBasicRead’

[12] opts.beforeWrite+TESTNS, '.onBasicWrite'

[13] optz.customExtenzions+'charmat’' ‘charvec’

[14] opts.watch+'both'

[15] z+opts LinkCreate name folder

[1&] assert'1=Countlinks’

[17] [ink+=0SE.Link.Links

[18] ns+#ename

[19]

[20] A Create a monadic function

[21] +(cfoo+' r+foo x' ' x x'JQNPUT folder, '/foo.dyalog’ ! i _ 1 !
[22] |assert'fooEn5.ﬁNR “foo' ' 'ns.UFX cho'ld/ assert test recovery eXpI’eSSIOH
[23] A Create & niladic / non-explicit function

[2%] _+{enil+" nil" ' 2+2"}QNPUT folder,'/nil.dyalog’

[25] assert'nil=ns. ONR "'nil'"" "ms.0OFX tnil’

[26]

[27] g Create an array

[28] _+~(e'["'one'" 1' ""'two'" 2]')QNPUT o2file+folder,'fone.apla’

[29] assert’'(2 2p"'one’" 1 "'two'' 2)=ns.onel’

2(

_Funcﬂon

Pos; 0/196,1

Test for expected errors

A test failing creations
assert'{6::1 ¢ 0=Countlinks}&'

3 [ONDELETE folder ¢ [JEX name ¢ opts.
assertError] opts LinkCreate name folder' "Source directory not found'

source+ dir’

R

Expression to run

R

Text to find in JDM

29

Testing APL Systems

Mocking

The Link QA needs to test Link's responses to notifications of additions,
deletions, and changes to files
File System Watcher cause callbacks to APL from .NET. These are:

Not processed until the end of the current thread time slice (so if QA script keeps running, it
may be some time before the callback runs)

Potentially simultaneous: If one takes more than one time slice to process, the next callback
may start running before the previous one is completed

This is usually not a problem for the normal use case of editing or moving a
small number of files outside APL "by hand"

However, for a QA that makes hundreds or thousands of additions, deletions,
moves and copies, it leads to intermittent, unpredictable failures

30

Testing APL Systems

Keep trying until
Event arrives and
is processed.

Hence the ¢

&) O3ELinkTestassert in C:/Devt/Link/Test/assert.aplf = O x

31

Eile Edit Syntax Refactor View
=E €« QA & ﬂlSearch... ¥ ow| P o [H aa mal K
[0] cht}*{ﬂsg}assert args;icleansexprimaxwait;end;timeout;txt a
[1] R Asynchronous assert: We don't kmow how quickly the FileSystemWatcher will do sp
[2]
[3] :If STOP_TESTS
[%] Log'S5TOP_TESTS detected...’
[5] (1+=0LC)OSTOP ' assert’
[&] tEndIf
[7]
[&] (expr clean)+2t{cargs),c'’
[9] end+{3000=~USE_MOCK_FS5W)+3=[0AT & allow three seconds of wait time unless mocking
timeout+0
:While 0e{0::0 ¢ swlexpr
Breathe
iUntil timeout+end<3=[JAI
:If 9008 A Monadic
msg+'assertion failed'
tEndIf
+If ~timeout o txt+'' ¢ :Return ¢ :EndIf
txtemsg,': ',expr,' & at ',(2=0XSI),'[',(s2=0LC),"']"'
[22] :If ASSERT_DORECOYER~Oz#clean A Was a recovery expression provided?
[23] sclean
[24%] :AndIf ~0e{0::0 ¢ 2w}lexpr A Did it work?
[25] Log'Warning: ',txt,(~0epclezn)/'~- Recovered via ',clean
[26] :Return
[27] tEndIf
[28]
[29] A No recovery, or recovery failed
[30] :If ASSERT_ERROR
[31] txt OSIGNAL 11
[32] :Else 8 Just muddle on, not recommended!
[33] Log txt
[34] tEndIf -

 Function

Pos: 0/35,1 _

MOCklng This also helped a bit

2} OSE LinkTest.test_basic in Ci/Devt/Link/Test/test_basic.aplf
File Edit Syntax Refactor Yiew
gE E « [& ﬂ||59arch... ¥ | % Aa Bal
[33] value+(3 2p'one’ 1 "two' 2 |"three' 3}
[34] assert'value=ns.one?' 'ns.one2+value’
[35]
[36] A Update array using Ljink.Fix
[37] ns.one?2+$ns.one?
[38] ns 'one? '0SE.Link.Fix""
[39] assert ‘nz.one?=[]5E.Dyalog.Array.Deserialise =[NGET oZfile 1'
[40]
[%1] g fename the srraw
[e2] Breathe ¢ Breathe ¢ Breathe
[%3] -] A because the previous Fix can trigger several "changed" filewatcher callbacks,
[%4] gl and the following QNMOYE would confuse them
[£5] otfile+folder, ' fonetwo.apla’
[e5] z+ns.one?
[e7] _+otfile QNMOYE oZfile
[£8] assert'z=ns.onetwo' 'ns.onetwo+z’
[£9] assert'0=[ONC ''ns.one2''' '[JEX '"'ns.one2’'"’
01
32 . Modified Function Pos: 44/198,2

Mocking

The out-of-order processing meant that delaying was not enough

Create-Update-Delete notifications might not arrive in that order

It was ultimately impossible to get the Link QA to run reliably when
using a real File System Watcher

The solution was to "Mock" the FSW by covering all file system
operations and call the FSW callback function immediately.

This simulated a "synchronous" FSW and finally made the tests
deterministic (after three years of messing about)

33

Testing APL Systems

&) O5ELinkTest.5etupSlave in C:/Devt/Link/Test/Setupblave.aplf

Mocking

Invoke FSW callback explicitly

File Edit Syntax Refactor View

== € A & ﬂHSearch... s Aa Ral

[0] I’Setupﬂlave

[1] A See InitGleobals for comments

[2]

[3] B :If USE_MOCK_FSW

[4%] A FSW switched of f - mock e Notify calls that it WOULD have made
[5] #.SLAVE-[NS "'

[&] QNDELETE+{a++ ¢] +(Notify ‘deleted’' wlio NDELETE w}

[7] QNPUT+{exists+[INERALGT S nemer=cu ¢ _*—[’Jatiﬂ' ({0I0+exists)="created’
[&] ONMOVE+{ «(Notify 'renamed’' o w)ro ONMOVER('*'ewlru}

[9] QMKDIR+{m++ ¢ +(Notify 'created' w)ro [OMKDIR w}

[10]

[11] tElself USE_ISOLATES

[12] A Make file updates via isolate so FS5W has a chance to work
[13]] :If 9.12#.ONC<c"isalate’

[1%] "isolate'#.0CY " "isolate.dws'

[151: | tEndIf

[18] {}#.isolate.Reset 0 A in case not closed properly last time
[17] {}#.isolate.Config'processors’ 1 A Only start 1 slave

[18] #.SLAVE+#.isolate.New'’

‘changed') name)ra NPUT w}

Asynchronous Effects / GUI Testing

Sometimes, a test will trigger an effect
which will take time to materialise

We have seen how Link "assert" waited in
a loop

Automated GUI testing will nearly always
exhibit this behaviour

35

Testing APL Systems

;’ M) DUMS3/QA/Eamples/DCBut: X | - =

<~ G = https://github.com/Dyalog/DUl/blob/master/MS53/QA/Examples/DC/ButtonSimple.dyalog B & A5 [|:| ﬁf\E A

O Product Solutions Open Source Pricing Search or jump to... Sign in ‘ Sign up ‘

B Dyalog / DUI ' public I\ wNotifications % Fork 0 Y7 Star 6 -

<> Code () Issues 3 I1 Pull requests 2 ® Actions B Projects @© Security | Insights

[Files DUI / MS3 / QA / Examples / DC / ButtonSimple.dyalog (&
' master M Q . bpbecker Initial commit c4e0add - 5 years ago G)Historg.r
Q Go tofile
| Code | Blame 3 lines (3 loc) - 76 Bytes raw D & [9]
> Examples -
b IndexData 1 msg«Test dummy
2 Click'btnPressMe’
? Logs 3 msg«'output’ WaitFor ‘Thank You!®
v QA/Examples msg+Test dummy;data
A Test /Examples/DC/InputGridSimple
> Applications
o DC data+"Morten Kromberg'(sl4e'/","¢3t075) A It's my birthday every day!
fname Lname bdate' SendKeys' 'datsz
Y Asimple.dyalog Click'ClickMe
s msg+ 'output ‘WaitFor'Hi Morten Kromberg. Happy Birthday! £63
D AudioSimple.dyalog v

.' D I o Selenium/Selenium.dyalog at m= X —I—

-
<~ O () https://github.com/Dyalog/Selenium/blob/master/Selenium.dyalog B oa A &% B D
. Selenium / Selenium.dyalo
[1] Files .
Blame 797 lines (713 loc) - 31.3 KB
¥ master v Q
b =]
479 V relarg WaitFor args;f;text;msg;element
Q Gotofile _ ,) .
488 [@ Retry until text/value of element begins with text
481 [@ Return msg on failure, '’ on success
g - Docsre 482 :If 9z |NC'larg® = largeFind larg ¢ :EndIf
3 - Samples 483 :If larg=@ & r«'Did not find element (T larg), # +@ ¢ :EndIf
484 element«larg
D gitignore 485 args+eis args
D LICENSE 486 (text msg)«2targs,{pargs)4 "Thank You!' 'Expected ocutput did not appear’
487 et v/, ((I+text="""")/text), """ ", "se" [1+xp, text]
D README.md 483 :IT element.TagNames"input’
489 f,+"element.GetAttributec’ "value" "}’
D Selenium from Dyalog.p... 490 :Else
I D Selenium.dyalog 491 f,+"element.Text}
492 :EndIf
D settings.json 493 re{~(¢ f)Retry &)/msg
494 v
Documentation = Share feedback 495

.]

WC - No idea
now to test
automatically

38

Testing APL Systems

L

Driving Dyalog IDE

39

Testing APL Systems

L

40

8. [) GhostRider/GhostRiderdyalog = % L—&—

& @) 3] https://github.com/Dyalog/GhostRider/blob/master/GhostRider.dyalog B a A& Y EJ] = %3

R T A R

<> Code () Issues

[0 Files
¥ master
Q Gotofile

[APLProcess.dyalog

I [GhostRider.dyalog

-

11 Pull requests

(® Actions [Projects @ Security |+ Insights

GhostRider / GhostRider.dyalog (&

@ nicolas-dyalog force reading whole buffer on error fb96886 - 2 years ago X1 History

Blame 1226 lines (1099 loc) - 69.7 KB Raw (0 & [9]

1
2
3
4
5
6
7
8
9

1e
11
12
13
14
15
16
17
18
19
28
21
22
23

:Class GhostRider

5 O

G)

[®

)

5

G)

[®

)

5

)

3

G)

[®

)

5

Headless RIDE client for QA and automation.

This class will connect to an APL process (or create a new one)

and synchronously communicate through the RIDE protocel in order to control it.
This means that when the GhostRider expects a response from the interpreter

it will block the APL thread until it gets it.

Dyalog v18.@ Unicode or later required.

To create a new APL process and connect to it
R« JNEW GhostRider {env}

- optional {env} is a string giving a list of environment variables to set up for the interpreter
e.g. 'MAXWS=1G WSPATH=."
defaults to "'

To connect to an existing process
R« JNEW GhostRider (port {host})
- port is the positive integer port number to connect to.
- optional {host} is a string giving the ip address to connect to

{host} defaults to '127.8.9.1" which is the local machine

RIDE commands usually wait for a response,

L8 onwp e oo

+

Test Driven Development

Write tests BEFORE fixing the problem or
adding the new functionality

... or at least before you make the
commits ©

41 Testing APL Systems

°* im} ‘ O Fix #3504 - allow Othis with Creat X | aF

L
) {5 httpsy//github.com/Dyalog/link/pull/598/files L2 B | A m = %
%« Merged Fix #504 - allow []this with Create, Export, Break #592
eri
J El] Changes from all commits * File filter ¥ Conversations ~ @-
Q. Filter changed files v -} 8 EEEE StartupSession/Link/Utils.apln [5J
~ [StartupSession/Link 447 . I = Ohizs _ _ _ _ _
446 4+ ns<("JTHISY.® "\.JTHIS'JR'" '"[I'IC' 1)ns (O Mantis 18553 : '[ITHIS' not understood by [JNC nor [INS nor
0 Utils.apln = (WG
447 4 :If *[Jthis'=[]c ns
v [Test —
443 448 :If ~900 | & » rewhere ¢ :EndIf (3 can’'t have a [JTHIS relative to nothing
0 test_create.aplf = 449 449 :Return
45 4s@ :EndIf
O test_export.aplf [
+
% O
v oy 4 HEEE Test/test_create.aplf [L DOG
X @@ -5,11 45,11 @@
5 5 @) test default UCMD to []THIS
G 6 2 QMKDIR subfolder ¢ name [NS &
7 7 @) :With name ¢ z+[|SE.UCMD']Link.Create ',folder s :EndWith (5 not goot - :With brings in locals into the
target namespace
8 - z«($name).{[JSE.UCMD w}']Link.Create [|THIS.[]THIS ',folder
8 + z<($name).{JSE.UCMD w}'JLink.Create [JTHIS.[Jthis ',folder
9 9 assert'Vv/" 'Linked:' ez’
10 1e assert'l=Countlinks"
11 11 @ :With name o z«[|SE.UCMD']Link.Break [|THIS' ¢ :EndWith
12 - z+<(4$name).{[]SE.UCMD w}']Link.Break [|THIS.[]THIS®
12+ z+(4name).{JSE.UCMD w}']JLink.Break ThIs’
13 13 assert'V/ " 'Unlinked' "ez’
14 14 assert'{6::1 ¢ @=Countlinks}&"
15 15 CJEX name < 3 [JNDELETE folder

l:e.o@x;

e

+ 4 P O

| |2 OSELinkTest.CreateTempDir in Ci/Devi/Link/Test/CreateTemp... = O >
iFiIE Edit Syntax Refactor View
[emp Folders EE <R @ 0o % v @
F:) [ﬂ]: ; d1I*EFEEtETEmPD1F create;i;prefix;tmp;dir
[1]§ i orefix+(739z0), " flinktest-"' ¢ i+0
[2] :Repeat o dir+prefix,gi+vi+l
[3] : :T tUntil ~v/ONEXISTS dirs+dire,”"" ‘-config’
[%]: : :If create ¢ 2 [IMKDIR dirs ¢ :EndIf
IR1 ¢
4 []
Modified Function Pos: 6/7.1
) O5E LinkTest.CleanFalders in CifDevt/Link/Test/CleanFolders.aplf — O >
File Edit Syntax Refactor View
EE{— A & BHSEarch... w o | P T [osa Aal
[0] LleanFolders;names;z
[1] R Utility to clear test folders after multiple failed/aborted tests
[2]
[3] :If O=gnames+=0 [ONINFOE1i- (739xz0), " '/linktest-*"'
[&] O+ 'Nothing to clean’
[5] —|-|:|
[&] tEndIf
[7]
[8] O+snames
[9] O+'Type ¥ to delete ',(s#names),’' folder(s):’
[10] z+]
[11] +(~v S "yY ez)p0
[12] 3 [ONDELETE names
4 []
43 _Functicm Pos: 0713,0

Observed APL Practices

= (Small) Unit Testing A_PL functions are more
. . like complete modules in
IS expensive other languages

|I| Data Driven Regression Generating lots of test
i
Testing is common data in APL is easy
Continuous -
V Int ti On the rise in APL!
ntegration

44 Testing APL Systems

Framework Requirement Spec

Assert Stopping behaviour

Bool rarg of built-in =

How to identify failing test Record Random Seed

Async capability? Log/report it on failure
Expect Specific Error :

Peet SP Temporary folder creation

EN or DM text
Logging levels ... And cleanup?

Error / Warning Code coverage

Verbose / Quiet

45 Testing APL Systems

Recommendations

Design application to allow
Unit Testing
Mocking

Write tests before eeding commit

(more to come)

46

Testing APL Systems

L

A couple of Tatin Packages

aplteam-Tester2

Kai Jaeger's own test framework for testing
his own tools / packages

davin-Tester

A very simple test framework

A7 Testing APL Systems

Tester?2

G 5 https://github.com/aplteam,/Tester2

‘= README.md

Overview &

The framework comprises two classes:

* Tester2 is a class required to manage and execute test cases.

* (CodeCoverage is needed if you want to produce a code coverage report, something
that is recommended.

The purpose of Tester2 is to provide a framework for testing all the projects of the
APLTree library. Only with such a framework is it possible to make changes to any APLTree
project with confidence.

Testing APL Systems

[Test cases in &.Tester.Te

¥ Irap errors I Debug |Stop on tests (1) v

Log lDetails

-—— Test framework “Tester2® version 0.%.0 from 2019-11-16 ——-
Searching for INI file Testcases.ini
...not found
Searching for INI file testcases APLTEAMZ.ini
...not found
Looking for a function "Initial”...
...not found
--- Tests started at 2019-11-17 12:26:11 on #.Tester2.TestCases.TestCasesSimu --—-

* Test_009 (1/13) p Does not execute in batch mode but fails otherwise
S Test_010 { 2/13) @ Does not execute in batch mode but is okay otherwise
* Test_011 (3/13) nm Fails

Test 021 { 4/13) nA Broken

+ Test_2 { 5/13) A Successful test case

J Test_Grouping_001 (6/13) A Exercise just grouping [1]

¢ Test_Grouping_002 (7/13) A Exercise just grouping [2]

+ Test_Grouping_003 (B/13) & Exercise just grouping [3]

+ Test_Grpi_001 { 9/13) & First in Grpi

4 Test_Grpi_002 (10/13) @A Second in Grpi

¢ Test_Grpi_003 (11/13) @A Third in Grpt

4 Test_Grp2_001 (12/13) @A First in Grp2

¢ Test_Grp2_002 (13/13) & Second in Grp2

13 test cases executed

2 test cases failed (flagged with "%*)

1 test case broken (flagged with "#")
Time of execution recorded on variable #.Tester2.TestCases.TestCasesSimu.TestCasesExec
Looking for a function "Cleanup”..

...not found

£ 3>

Start [Pause

[N Test cases in & Tester?. TestCases

¥ Trap errors I Debug Stop on tests (1) w

Log DetaiLs]

-—— Test framework “Tester2® wversion (

Searching for INI file Testcases.ini
.not found

Searching for INI file testcases_ APLTE
.not found

Looking for a function "Initial”..
.not found

--- Tests started at 2019-11-17 12:26:

+ Test_009 (1/13) n Does nc
< Test_010 { 2/13) & Does n¢
* Test_011 (3/13) a Fails
Test 021 (4/13) @ Broken
+ Test_2 { 5/13) & Succes:
< Test_Grouping_001 (6/13) @A Exerci:
¢ Test_Grouping_002 (7/13) A Exerci:
+ Test_Grouping_003 (B/f13) @A Exerci:
+ Test_Grpi_001 (9/13) n First
4 Test_Grpl_002 (10/13) A Second
¢ Test_Grpi_003 (11/13) a Third
4 Test_Grp2_001 (12/13) a First
¢ Test_Grp2_002 (13/13) A Second

13 test cases executed

2 test cases failed (flagged with "+

1 test case broken (flagged with "&'
Time of execution recorded on variable
Looking for a function “Cleanup”...

.not found

£

T Pause

u Test cases in £, Tester? TestiCases

W Trap errors T Debug |Stop on tests (1) v
Log Details|
Name Comments Result
1 = 009 Does not execute im batch mode but fails otherwise Failed
] T T P Py P e O
3 011 Fails Failed
L 021 Broken {Broken]
5 S| 2 auccessful test case OK
& < |Grouping_001 |Exercise just grouping [1] oK
7 ' |Grouping_002 |Exercise just grouping [2] OK
] v |Grouping_003 |Exercise just grouping [3] oK
9 < |Grpi_o001 First in Grpi 0K
10 4 |Grpil_oo02 Second in Grpl OK
i1 ¥ |Grpi_003 Third in Grpi OK
12 < |Grp2_001 First in Grp2 0K
13 < |Grp2_002 Second in Grp2 OK

[T Pause

davin-Tester

51

Testing APL Systems

L

@ Tatin * +

.
(: >
&~ O [https;//tatindev/v1/packages

e Tatin Registry

List of packages

test

|
|
- Major .
Package name Description Versi Project URL OS UC Tags
ersions
Manitors which .
aplteam- parts of an . I :
- c o 1 github.com Mac, code-coverage,test-framework, unit-tests
CodeCoverage application got i
Win
actually executed
Lists APL objects by Lin,
aplteam-Latest ; 1 github.com Mac, Yes list-apl-objects
change date/time Win
Dyalog APL test . I
aplteam-Tester? £ 1 github.com Mac, test, test-framework
ramework -
Win
Simplified function- Lin,
| davin-Tester level testing of 1 github.com Mac, function, testing,tester,validation
programs Win

Created by Tatin version 0.102.2+1680 from 2023-10-09 under Linux-64 18.2.45645.0 S Runtime — Bugs, questions, problems:_Binfo@tatin.dev

1 8o B e o x

(;‘ O @ Tin x °F -

- & G @] https://tatin.dev/v1/packages/details/davin-Tester-1.0.1

@ Tatin Registry
|

Details of <davin-Tester-1.0.1>

=
x
s
H
-
[}
s
=51
53]

ap;l: u II=
assets: "",
date: 20220913.024216,

description: "Simplified function-level testing of programs",
documentation: "https://github.com/DavinChurch/Tester/blob/main/README .md",

files: "",
group: "davin"
io: 1,

license: "MIT",
'|x: Illl’

maintainer: "Davin Church <davinchurch@gmail.com>",
minimumAplVersion: "18.0",
ml: 1,
name: "Tester",
os_lin: 1,
os_mac: 1,
os_win: 1,
project_url: "https://github.com/DavinChurch/Tester/blob/main/README.md",
source: "Source/Tester",
tags: "function,testing,tester,validation",
version: "1.0.1",
}
|

Created by Tatin version 0.102.24+1680 from 2023-10-09 under Linux-64 18.2.45645.0 S Runtime — Bugs, questions, problems: Binfo@tatin.dev

B DavinChurch / Tester ' Public

<> Code (3) lssues

[Files

(| @ Tatin
|

Q Go tofile

% | €) Tester/READMEmd at main.Dz. X | + - =
3 https://github.com/DavinChurch/Tester/blob/main/README.md BoA o T B e
-~
I;‘. Notifications % Fork 0 T Star 2 b
£% Pullrequests ©J) Discussions () Actions [Projects 0 Security |~ Insights
Tester / README.md (&
Q DavinChurch Clarification 2dfTbeT - 2 months ago %5 History
| Preview ‘ Code Blame 59 lines (42 loc) - 6.31 KB Raw LI.:I &=

BB Distribution
> [Source
[ucense

| D reaomeEmd

Tester ¢

This is a small set of utility programs to assist with function-level testing of applications using a very simple syntax and programming interface.
Copy any or all of these routines into a namespace containing test case functions (or cross-referenced with them). These completely stand-
alone testing-management programs (implemented as programmed operators) are then called from the application’s test case function(s) to
perform the call-and-return test(s) as written. Executing the test case function(s) will then perform all the coded testing and result validations.

If multiple functions are to be used to perform testing, the included Test cover function may be used to call them all in sequence. It is invoked
with a list of function names (in almost any reasonable structure and format) as a right argument, the matching function names in the
namespace will be executed. These names may include an * wild-card character, so Test '*' will execute all the functions in the workspace.
An optional left argument may be specified to temporarily override the global StoponErrar setting (see below). Test will return a completion
message unless errors are being counted, in which case it will return that count.

This is a member of the APLTree project and is also available via the Tatin package manager.

Testing engine @

The testing engine consists of three independent, stand-alone APL operators. These may be used individually for simple argument/result
testing anywhere, The left operand of each operator is the function to be tested. The right operand is the expected result. The derived function
uses the provided left and right arguments and passes them directly to the function being tested. The three routines are:

lﬂO".‘:lﬂtp@x

+

Testing engine &

The testing engine consists of three independent, stand-alone APL operators. These may be used individually for simple argument/result
testing anywhere. The left operand of each operator is the function to be tested. The right operand is the expected result. The derived function
uses the provided left and right arguments and passes them directly to the function being tested. The three routines are:

Tester Used to...

Make sure the tested function returns the expected result, which is provided as the right operand value (if a value is specified).
Pass Alternatively a boolean function may be specified as the right operand which will be called monadically with the result to verify

that the result is correct.

Make sure the tested function does NOT return an explicit result in this case. The right operand must be a boolean function to
Pass determine if the tested function produced proper side-effects, or {1} or (1%) is sufficient if no explicit verification is to be

performed.

Make sure the tested function exits with a [JsIGNAL as validated by the right operand. The right operand may be text to match
Fail oM, a numeric (array) for [JEN to be a member of, or a boolean function (provided up to both of these values) to validate that

the failure was as expected.

55 Testing APL Systems &

Error handling during testing &

These routines all respect the setting of an optional namespace-global variable named stoponerror , which may be set to any of the following

values:
StopOnError Function
] Do not stop, just report invalid test results.
1 Stop in the testing function on the line that did not validate. [Default]
2 Stop in the tested function at the original error without any error trapping.
1 Do not stop, and increment global variable "Errors” if it exists.

This error handling is performed as described if an APL error cccurs during execution of the test or if validation fails.

56 Testing APL Systems

Stopping during testing &

These routines also respect the setting of an optional namespace-global variable named StoponTest which may be used to place a [JsTop
breakpoint in the code being tested. It should consist of a simple character vector (or a nested vector of such vectors to specify several stop
points) that contains the name of the testing function (e.g. TestFoo) that is calling one of the above routines (not the name of the function
actually being tested), followed by the desired line number in square brackets.

For instance, if testing function TestFoo runs 3 different tests on function Foo from its lines 1, 2, and 3, then you may tell the testing to pause
for the test on line 2 by specifying StopOnTest«'TestFoo[2]" . The stop actually occurs on Foo[1] but only when it is being called from
TestFoo[2] .

If you wish to specify a particular line of the tested code on which to stop (instead of [1]), extend the StopOnTest breakpoint notation to
include an @ followed by the function name and line number where the stop is to be placed. For instance, StopOnTest«'TestFoo[2]@Foo[17]"
will cause the stop to occur on line [17] of Foo when it is called from line [2] of TestFoo . This method can also be used to stop on any
other subroutine instead by specifying its name after the @ . Any tested function not in the current namespace should be listed with an
appropriate full or relative dotted name.

Remember that any D-fn must have multiple lines in order for it to accept a [JsTOP setting.

57 Testing APL Systems

58

Writing application testing functions #

Create one or more functions with any desired names (e.g. TestFoo) that uses these operators for each function call to be tested. For instance,
if the Plus function is to be tested with:

3 Plus 4 L

Include in your testing function (e.g. TestFoo) the simple line:

3 (Plus Pass 7) 4 l'_[;]

This means that 3 Plus 4 will pass the test if it returns 7 for a result.

Testing function notes &

* These arbitrary testing routines may include any other code as needed to prepare the tests to be performed (and clean up afterwards),
initialize testing arguments, loop through multiple tests, call subroutines, or perform any other desired actions that APL allows.

* A niladic function may be tested by enclosing it in a D-fn and passing a dummy right argument.

* Since these routines are actually operators rather than functions, remember to use parentheses around the operator and its operands or
use another mechanism to separate the operands from the tested function’s arguments.

* Also remember that when invoking operators, the right operand has short scope and probably needs to be enclosed in parentheses itself
whenever an expression is being used as the right operand rather than a simple value.

e The ~ function may be used with Pass to perform a simple value assertion test, such as in (~Pass 7) 3+4, or a named function may be
assigned to perform a logical assertion check with AsserterPass 1.

o

Our Application

https://github.com/Dyalog-Training/DTest/coolStat/src/coolStat.apln

:Namespace coolStat

A next generation statistics package

©2023 Humble Author

in memoriam Ken Iverson, Kurt Gédel, Abu Dscha’ far Muhammad ibn Musa al-Chwarizm7 (ley ZE<d) mlrs = oo | 2l sipa,)
with gratitude to Adam Brudzewsky and in respect of 5teve Mansour

dedicated to my lovely wife

DD D DD

& Avg+{
wl="=wu
O=#w:0
L }
& Median+{
(2221 0-[RechlFoce[2220 148)u
L }
= Count+{s counts the number of elements in a vector
pi
}

:EndNamespace

Exercise 1

Write a test for one or more coolStat functions using davin-Tester

Jtatin.loadpackages Tester
w OF ..

tester«'https://github.com/DavinChurch/Tester/blob/main/Source/Tester/"'
{OSE.UCMD 'get ',tester,' ',w} 'Fail.aplo' 'Pass.aplo' 'Pass_.aplo' 'Test.aplf'

... Or use code scraped from
https://xpgz.github.io/learnapl/testing.html (or slide #18)

60 Testing APL Systems

https://xpqz.github.io/learnapl/testing.html

	Default Section
	Slide 0: TP1: Testing APL Systems
	Slide 1: Goals
	Slide 2
	Slide 3: Session 1: Introduction (Morten)
	Slide 4: Session 2: DTest (Michael)
	Slide 5: Session 3: Automation (Stefan)
	Slide 6: Terminology & Techniques
	Slide 7: Unit Tests
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Test Frameworks for APL
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Some Recent QA we have written…
	Slide 21
	Slide 22: Ullu
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Link Testing
	Slide 27
	Slide 28
	Slide 29: Test for expected errors
	Slide 30: Mocking
	Slide 31
	Slide 32: Mocking
	Slide 33: Mocking
	Slide 34: Mocking
	Slide 35: Asynchronous Effects / GUI Testing
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Driving Dyalog IDE
	Slide 40: Driving Dyalog IDE
	Slide 41: Test Driven Development
	Slide 42
	Slide 43: Temp Folders
	Slide 44: Observed APL Practices
	Slide 45: Framework Requirement Spec
	Slide 46: Recommendations
	Slide 47: A couple of Tatin Packages
	Slide 48: Tester2
	Slide 49
	Slide 50
	Slide 51: davin-Tester
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: Our Application
	Slide 60: Exercise 1

