
Elsinore 2023

TP1: Testing APL Systems

Michael Baas, Morten Kromberg, Stefan Kruger

Testing APL Systems1

Goals

 Review what we know about existing tools and
frameworks for testing

 Present some techniques that Dyalog is actually using

 Share our collective experience

 Discuss requirements for potential future frameworks
or tools that Dyalog (or the community) might develop

Testing APL Systems2

Testing APL Systems3

 Define Terminology

 Review Some Existing Frameworks & Actual Tests

Session 1: Introduction (Morten)
13:30-14:30 (ish, hopefully a bit less)

Exercise 1:
Use "Tester" package to write a test

Testing APL Systems4

 Basics

 Demo

 DIY

 Bonus: Automation

 Bonus: Code Coverage

Session 2: DTest (Michael)
14:45-15:45

Exercise: Write a test with DTest for
coolStat's "Count" function

Testing APL Systems5

 The case for automation

 Testing on the command line

 Running tests in Docker

 Automation with GitHub Actions

Session 3: Automation (Stefan)

Exercise: Deploy test automation to GitHub

16:00-17:00

Testing APL Systems6

Types of Testing

 Unit

 Regression

 Integration

 Data Driven

 Code Coverage

Techniques

 Test-driven Development

 Mocking (fakes & stubs)

 Continuous Integration

 GUI Testing (Selenium)

Terminology & Techniques

Testing APL Systems7

Unit Tests

Testing APL Systems8

Testing APL Systems9

Testing APL Systems10

Testing APL Systems11

Testing APL Systems12

Testing APL Systems13

Testing APL Systems14

Testing APL Systems15

What about primitives
with switches "built in"?

x←|÷y

Test with y positive,
negative and zero?

Code coverage is
necessary but NOT
sufficient.

Testing APL Systems16

"Unit Test" Frameworks

 https://github.com/Gianfrancoalongi/APLUnit

 A "classical" Unit Test framework, inspired by non-
APL frameworks

 https://xpqz.github.io/learnapl/testing.html

 A more pragmatic and APL-friendly approach.

Other Test Frameworks

 DTest (DyalogTest) – an internal tool used at
Dyalog, that is included with Dyalog APL

 davin-Tester – A Tatin Package by Davin Church

 aplteam-Tester2 – Tatin Package by Kai Jaeger,
used to test many of Kai's tools

 aplteam-CodeCoverage – Tatin package for
measuring code coverage

Test Frameworks for APL

Do you/we know of others?

https://github.com/Gianfrancoalongi/APLUnit
https://xpqz.github.io/learnapl/testing.html

Testing APL Systems17

https://github.com/
Gianfrancoalongi/APLUnit

Testing APL Systems18

:Namespace unittest
 ⎕IO ← 0
 run←{
 tests ← 'test_.+'⎕S'&'⎕NL ¯3
 0=≢tests: 'no tests found'
 ↑{⍺,('.'/⍨30-≢⍺),⍵⊃'[FAIL]' '[OK]'}⌿↑tests (⍎¨tests,¨⊂' ⍬')
 }
:EndNamespace

unittest.test_upper←{'FOO'≡#.upper 'foo'}

https://xpqz.github.io/
learnapl/testing.html

https://xpqz.github.io/learnapl/testing.html

Testing APL Systems19

https://xpqz.github.io/learnapl/testing.html

… also contains a "framework" for data-driven testing:

https://xpqz.github.io/learnapl/testing.html

Testing APL Systems20

Some Recent QA we have written…

 Ullu: Testing APL primitives

 Kamila's tests

 Link Testing

 Selenium

(Michael will show some examples based on DTest in the next section)

Testing APL Systems21

Testing APL Systems22

Ullu

Id & Comment

Testing APL Systems23

Testing APL Systems24

Testing APL Systems25

Testing APL Systems26

Link Testing

Testing APL Systems27

assert 'test'

Testing APL Systems28

assert 'test' 'recovery-expression'

Testing APL Systems29

Test for expected errors

Expression to run Text to find in ⎕DM

Testing APL Systems30

 The Link QA needs to test Link's responses to notifications of additions,
deletions, and changes to files

 File System Watcher cause callbacks to APL from .NET. These are:
 Not processed until the end of the current thread time slice (so if QA script keeps running, it

may be some time before the callback runs)

 Potentially simultaneous: If one takes more than one time slice to process, the next callback
may start running before the previous one is completed

 This is usually not a problem for the normal use case of editing or moving a
small number of files outside APL "by hand"

 However, for a QA that makes hundreds or thousands of additions, deletions,
moves and copies, it leads to intermittent, unpredictable failures

Mocking

Testing APL Systems31

Keep trying until
Event arrives and
is processed.

Hence the ⍎

Testing APL Systems32

Mocking This also helped a bit

Testing APL Systems33

 The out-of-order processing meant that delaying was not enough
 Create-Update-Delete notifications might not arrive in that order

 It was ultimately impossible to get the Link QA to run reliably when
using a real File System Watcher

 The solution was to "Mock" the FSW by covering all file system
operations and call the FSW callback function immediately.

 This simulated a "synchronous" FSW and finally made the tests
deterministic (after three years of messing about)

Mocking

Testing APL Systems34

Mocking Invoke FSW callback explicitly

Testing APL Systems35

 Sometimes, a test will trigger an effect
which will take time to materialise

 We have seen how Link "assert" waited in
a loop

 Automated GUI testing will nearly always
exhibit this behaviour

Asynchronous Effects / GUI Testing

Testing APL Systems36

Testing APL Systems37

Testing APL Systems38

⎕WC – No idea
how to test
automatically

Testing APL Systems39

Driving Dyalog IDE

Testing APL Systems40

Driving Dyalog IDE

Testing APL Systems41

 Write tests BEFORE fixing the problem or
adding the new functionality

 … or at least before you make the
commits ☺

Test Driven Development

Testing APL Systems42

Testing APL Systems43

Temp Folders

Testing APL Systems44

Observed APL Practices

(Small) Unit Testing
is expensive

APL functions are more
like complete modules in
other languages

Data Driven Regression
Testing is common

Generating lots of test
data in APL is easy

Continuous
Integration

On the rise in APL!

Testing APL Systems45

 Assert
 Bool rarg of built-in ≡

 How to identify failing test

 Async capability?

 Expect Specific Error
 EN or DM text

 Logging levels
 Error / Warning

 Verbose / Quiet

 Stopping behaviour

 Record Random Seed
 Log/report it on failure

 Temporary folder creation
 … And cleanup?

 Code coverage

Framework Requirement Spec

Testing APL Systems46

 Design application to allow
 Unit Testing

 Mocking

 Write tests before coding commit

 (more to come)

Recommendations

Testing APL Systems47

 aplteam-Tester2
 Kai Jaeger's own test framework for testing

his own tools / packages

 davin-Tester
 A very simple test framework

A couple of Tatin Packages

Testing APL Systems48

Tester2

Testing APL Systems49

Testing APL Systems50

Testing APL Systems51

davin-Tester

Testing APL Systems52

Testing APL Systems53

Testing APL Systems54

Testing APL Systems55

Testing APL Systems56

Testing APL Systems57

Testing APL Systems58

Testing APL Systems59

https://github.com/Dyalog-Training/DTest/coolStat/src/coolStat.apln

Our Application

Testing APL Systems60

 Write a test for one or more coolStat functions using davin-Tester

 … Or use code scraped from
https://xpqz.github.io/learnapl/testing.html (or slide #18)

Exercise 1

]tatin.loadpackages Tester

… or …

tester←'https://github.com/DavinChurch/Tester/blob/main/Source/Tester/'
{⎕SE.UCMD 'get ',tester,' ',⍵}¨'Fail.aplo' 'Pass.aplo' 'Pass_.aplo' 'Test.aplf'

https://xpqz.github.io/learnapl/testing.html

	Default Section
	Slide 0: TP1: Testing APL Systems
	Slide 1: Goals
	Slide 2
	Slide 3: Session 1: Introduction (Morten)
	Slide 4: Session 2: DTest (Michael)
	Slide 5: Session 3: Automation (Stefan)
	Slide 6: Terminology & Techniques
	Slide 7: Unit Tests
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Test Frameworks for APL
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Some Recent QA we have written…
	Slide 21
	Slide 22: Ullu
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Link Testing
	Slide 27
	Slide 28
	Slide 29: Test for expected errors
	Slide 30: Mocking
	Slide 31
	Slide 32: Mocking
	Slide 33: Mocking
	Slide 34: Mocking
	Slide 35: Asynchronous Effects / GUI Testing
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Driving Dyalog IDE
	Slide 40: Driving Dyalog IDE
	Slide 41: Test Driven Development
	Slide 42
	Slide 43: Temp Folders
	Slide 44: Observed APL Practices
	Slide 45: Framework Requirement Spec
	Slide 46: Recommendations
	Slide 47: A couple of Tatin Packages
	Slide 48: Tester2
	Slide 49
	Slide 50
	Slide 51: davin-Tester
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: Our Application
	Slide 60: Exercise 1

