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Goals

 Review what we know about existing tools and 
frameworks for testing

 Present some techniques that Dyalog is actually using

 Share our collective experience

 Discuss requirements for potential future frameworks 
or tools that Dyalog (or the community) might develop
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 Define Terminology

 Review Some Existing Frameworks & Actual Tests

Session 1: Introduction (Morten)
13:30-14:30 (ish, hopefully a bit less)

Exercise 1: 
Use "Tester" package to write a test
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 Basics

 Demo

 DIY

 Bonus: Automation

 Bonus: Code Coverage 

Session 2: DTest (Michael)
14:45-15:45

Exercise: Write a test with DTest for 
coolStat's "Count" function
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 The case for automation

 Testing on the command line

 Running tests in Docker

 Automation with GitHub Actions

Session 3: Automation (Stefan)

Exercise: Deploy test automation to GitHub

16:00-17:00
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Types of Testing

 Unit 

 Regression

 Integration

 Data Driven

 Code Coverage

Techniques

 Test-driven Development

 Mocking (fakes & stubs)

 Continuous Integration

 GUI Testing (Selenium)

Terminology & Techniques
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Unit Tests
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What about primitives
with switches "built in"?

x←|÷y

Test with y positive,
negative and zero?

Code coverage is 
necessary but NOT
sufficient.
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"Unit Test" Frameworks

 https://github.com/Gianfrancoalongi/APLUnit 

 A "classical" Unit Test framework, inspired by non-
APL frameworks

 https://xpqz.github.io/learnapl/testing.html

 A more pragmatic and APL-friendly approach.

Other Test Frameworks

 DTest (DyalogTest) – an internal tool used at 
Dyalog, that is included with Dyalog APL

 davin-Tester – A Tatin Package by Davin Church

 aplteam-Tester2 – Tatin Package by Kai Jaeger, 
used to test many of Kai's tools

 aplteam-CodeCoverage – Tatin package for 
measuring code coverage

Test Frameworks for APL

Do you/we know of others?

https://github.com/Gianfrancoalongi/APLUnit
https://xpqz.github.io/learnapl/testing.html
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https://github.com/
Gianfrancoalongi/APLUnit
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:Namespace unittest
    ⎕IO ← 0
    run←{
        tests ← 'test_.+'⎕S'&'⎕NL ¯3
        0=≢tests: 'no tests found'
        ↑{⍺,('.'/⍨30-≢⍺),⍵⊃'[FAIL]' '[OK]'}⌿↑tests (⍎¨tests,¨⊂' ⍬')
    }
:EndNamespace

unittest.test_upper←{'FOO'≡#.upper 'foo'}

https://xpqz.github.io/
learnapl/testing.html

https://xpqz.github.io/learnapl/testing.html
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https://xpqz.github.io/learnapl/testing.html

… also contains a "framework" for data-driven testing:

https://xpqz.github.io/learnapl/testing.html
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Some Recent QA we have written…

 Ullu: Testing APL primitives

 Kamila's tests

 Link Testing

 Selenium

(Michael will show some examples based on DTest in the next section)
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Ullu

Id & Comment
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Link Testing
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assert 'test'
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assert 'test' 'recovery-expression'
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Test for expected errors

Expression to run Text to find in ⎕DM
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 The Link QA needs to test Link's responses to notifications of additions, 
deletions, and changes to files

 File System Watcher cause callbacks to APL from .NET. These are:
 Not processed until the end of the current thread time slice (so if QA script keeps running, it 

may be some time before the callback runs)

 Potentially simultaneous: If one takes more than one time slice to process, the next callback
may start running before the previous one is completed

 This is usually not a problem for the normal use case of editing or moving a 
small number of files outside APL "by hand"

 However, for a QA that makes hundreds or thousands of additions, deletions, 
moves and copies, it leads to intermittent, unpredictable failures

Mocking
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Keep trying until
Event arrives and
is processed.

Hence the ⍎
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Mocking This also helped a bit
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 The out-of-order processing meant that delaying was not enough
 Create-Update-Delete notifications might not arrive in that order

 It was ultimately impossible to get the Link QA to run reliably when
using a real File System Watcher

 The solution was to "Mock" the FSW by covering all file system 
operations and call the FSW callback function immediately.

 This simulated a "synchronous" FSW and finally made the tests 
deterministic (after three years of messing about)

Mocking
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Mocking Invoke FSW callback explicitly
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 Sometimes, a test will trigger an effect
which will take time to materialise

 We have seen how Link "assert" waited in 
a loop

 Automated GUI testing will nearly always
exhibit this behaviour

Asynchronous Effects / GUI Testing
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⎕WC – No idea 
how to test 
automatically
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Driving Dyalog IDE
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Driving Dyalog IDE
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 Write tests BEFORE fixing the problem or 
adding the new functionality

 … or at least before you make the 
commits ☺

Test Driven Development
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Temp Folders
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Observed APL Practices

(Small) Unit Testing
is expensive

APL functions are more 
like complete modules in 
other languages

Data Driven Regression 
Testing is common

Generating lots of test 
data in APL is easy

Continuous
Integration

On the rise in APL!
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 Assert
 Bool rarg of built-in ≡

 How to identify failing test

 Async capability?

 Expect Specific Error
 EN or DM text

 Logging levels
 Error / Warning

 Verbose / Quiet

 Stopping behaviour

 Record Random Seed
 Log/report it on failure

 Temporary folder creation
 … And cleanup?

 Code coverage

Framework Requirement Spec
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 Design application to allow
 Unit Testing

 Mocking

 Write tests before coding commit

 (more to come)

Recommendations
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 aplteam-Tester2
 Kai Jaeger's own test framework for testing

his own tools / packages

 davin-Tester
 A very simple test framework

A couple of Tatin Packages
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Tester2
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davin-Tester
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https://github.com/Dyalog-Training/DTest/coolStat/src/coolStat.apln

Our Application
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 Write a test for one or more coolStat functions using davin-Tester

 … Or use code scraped from 
https://xpqz.github.io/learnapl/testing.html (or slide #18)

Exercise 1

]tatin.loadpackages Tester

… or …

tester←'https://github.com/DavinChurch/Tester/blob/main/Source/Tester/'
{⎕SE.UCMD 'get ',tester,' ',⍵}¨'Fail.aplo' 'Pass.aplo' 'Pass_.aplo' 'Test.aplf'

https://xpqz.github.io/learnapl/testing.html
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