
Elsinore 2023

Part 3: Testing Dyalog with
Docker and GitHub Actions

Stefan Krüger

Docker and GitHub Actions2

git GitHub Docker

Docker and GitHub Actions3

⬢ Learn how to run your unit tests from the shell.

⬢ Learn how to use a Docker container to run your
application's unit tests

⬢ Learn how to deploy your Docker container as a GitHub
Action to run your tests automatically on each commit

Aims

Docker and GitHub Actions4

⬢ Learn how to run your unit tests from the shell.

⬢ Learn how to use a Docker container to run your
application's unit tests

⬢ Learn how to deploy your Docker container as a GitHub
Action to run your tests automatically on each commit

Aims

Docker and GitHub Actions5

⬢ Learn how to run your unit tests from the shell.

⬢ Learn how to use a Docker container to run your
application's unit tests

⬢ Learn how to deploy your Docker container as a GitHub
Action to run your tests automatically on each commit

Aims

Docker and GitHub Actions6

⬢ Docker installed

⬢ git installed -- or GitHub Desktop

⬢ A GitHub account

⬢ Dyalog v18.2 + current(ish) DTest

Pre-requisites

Docker and GitHub Actions7

GitHub Desktop

Docker and GitHub Actions8

DEMO

Docker and GitHub Actions9

⬢ To obtain a working copy, and not having to type along, fork and
clone this repository

https://github.com/dyalog-training/2023-TP1b

Task: Fork 'n Clone

Docker and GitHub Actions10

⬢ To obtain a working copy, and not having to type along, fork and
clone this repository

https://is.gd/dytest

Task: Fork 'n Clone

Docker and GitHub Actions11

Fork...
1

2

Docker and GitHub Actions12

Enable workflows...

1

2

Docker and GitHub Actions13

...and Clone 1

2
(3)

Docker and GitHub Actions14

git clone --recursive git@github.com:{ACCT}/2023-TP1b.git

git clone --recursive https://github.com/{ACCT}/2023-TP1b.git

Console jocks:

Docker and GitHub Actions15

Actions Docker

Docker and GitHub Actions16

⬢ Code changes are automatically built, tested, and integrated
into the existing codebase on a frequent basis

⬢ GitHub has a light-weight built-in CI framework called
"Actions".

⬢ Combining Docker and Actions, we can test our Dyalog code
automatically.

GitHub Actions: Continuous integration

Docker and GitHub Actions17

⬢ Code changes are automatically built, tested, and integrated
into the existing codebase on a frequent basis

⬢ GitHub has a light-weight built-in CI framework called
"Actions".

⬢ Combining Docker and Actions, we can test our Dyalog code
automatically.

Continuous Integration?

Docker and GitHub Actions18

⬢ Code changes are automatically built, tested, and integrated
into the existing codebase on a frequent basis

⬢ GitHub has a light-weight built-in CI framework called
"Actions".

⬢ Combining Docker and Actions, we can test our Dyalog code
automatically.

Continuous Integration?

Docker and GitHub Actions19

⬢ Containerisation: lightweight form of virtualisation.

⬢ Containers share the host system's OS and isolate software
dependencies.

⬢ Efficient, easy to set up, and compatible across different
computing environments.

⬢ Useful for running tests in CI-environments.

Docker?

Docker and GitHub Actions20

⬢ Containerisation: lightweight form of virtualisation.

⬢ Containers share the host system's OS and isolate software
dependencies.

⬢ Efficient, easy to set up, and compatible across different
computing environments.

⬢ Useful for running tests in CI-environments.

Docker?

Docker and GitHub Actions21

⬢ Containerisation: lightweight form of virtualisation.

⬢ Containers share the host system's OS and isolate software
dependencies.

⬢ Efficient, easy to set up, and compatible across different
computing environments.

⬢ Useful for running tests in CI-environments.

Docker?

Docker and GitHub Actions22

⬢ Containerisation: lightweight form of virtualisation.

⬢ Containers share the host system's OS and isolate software
dependencies.

⬢ Efficient, easy to set up, and compatible across different
computing environments.

⬢ Useful for running tests in CI-environments.

Docker?

Docker and GitHub Actions23

Project Layout

.
├── src
│ ├── mysum.aplf
│ └── run.aplf
└── tests
 ├── test_assert.aplf
 └── test_mysum.aplf

Docker and GitHub Actions24

A DTest Function

test_mysum ← {
 '1+1 should equal 2'⊢2 Assert 1 #.mysum 1:
 ''
}

Docker and GitHub Actions25

Task: Run]dtest manually

]link.create # /{path}/2023-TP1b/src
]dtest /{path}/2023-TP1b/tests

Docker and GitHub Actions26

⬢ Utilise the LOAD parameter

⬢ On start-up, Dyalog will]link the folder given

⬢ If it finds a function called Run, it will run it

Running tests from the command line

Docker and GitHub Actions27

Task: Run tests from shell

% dyalog -b -s LOAD=src
Linked: # ←→ /Users/stefan/work/testws/src
All tests passed

Docker and GitHub Actions

% dyalog -b -s LOAD=src
Linked: # ←→ /Users/stefan/work/testws/src
 *** Errors logged
 test_assert: ... = "Assertion failed: 1+1 should equal 2"
 left arg = "3", ⎕DR=83, rho=
 right arg = "2", ⎕DR=83, rho=
 Time spent: 0.0s
 -order="2 1"

28

Task: Make a test fail!

Docker and GitHub Actions29

⬢ Run locates the tests, and executes]dtest, and then
⎕OFFs appropriately

⬢ The GitHub Action expects a command to return 0 on
success, and non-zero otherwise: ⎕OFF 0 means success.

The Run function

Docker and GitHub Actions30

Run dir;testdir;results

testdir ← 'tests',⍨⊃1⎕NPARTS'[/\\]$'⎕R''⊃dir
:If ~(⎕NEXISTS⍠1) testdir,'/test_*'
 ⎕←'No tests found'
 ⎕OFF 0
:EndIf
⎕PW ← 32767
results ← ⎕SE.UCMD'DTest ',testdir, ' -quiet'
:If 0=≢results
 ⎕←'All tests passed'
 ⎕OFF 0
:Else
 ⎕←results
 ⎕OFF 11
:EndIf

Called with ⊂DIR by dyalog
when encountering LOAD

Find our tests dir

Abandon play if we can't
find any tests

Call]dtest

]dtest returns empty vector in quiet mode

Return value 0 for success

FAIL!

Run

Docker and GitHub Actions31

Docker

[1] FROM dyalog/dyalog

[2] ARG DYALOG_RELEASE=18.2

[3] USER root

[4] RUN mkdir -p /home/dyalog/MyUCMDs

[5] RUN chmod 777 /home/dyalog/MyUCMDs && chown dyalog:dyalog /home/dyalog/MyUCMDs

[6] RUN mkdir /src /tests

[7] RUN chown dyalog:dyalog /src /tests

[8] COPY entrypoint.sh /entrypoint
[9] RUN chmod +x /entrypoint

[10] RUN sed -i "s/{{DYALOG_RELEASE}}/${DYALOG_RELEASE}/" /entrypoint

[11] USER dyalog

[12] ENV LOAD "/src"

[13] ENTRYPOINT ["/entrypoint"]

[1] FROM dyalog/dyalog

[2] ARG DYALOG_RELEASE=18.2

[3] USER root

[4] RUN mkdir -p /home/dyalog/MyUCMDs

[5] RUN chmod 777 /home/dyalog/MyUCMDs && chown dyalog:dyalog /home/dyalog/MyUCMDs

[6] RUN mkdir /src /tests

[7] RUN chown dyalog:dyalog /src /tests

[8] COPY entrypoint.sh /entrypoint
[9] RUN chmod +x /entrypoint

[10] RUN sed -i "s/{{DYALOG_RELEASE}}/${DYALOG_RELEASE}/" /entrypoint

[11] USER dyalog

[12] ENV LOAD "/src"

[13] ENTRYPOINT ["/entrypoint"]

[1] FROM dyalog/dyalog

[2] ARG DYALOG_RELEASE=18.2

[3] USER root

[4] RUN mkdir -p /home/dyalog/MyUCMDs

[5] RUN chmod 777 /home/dyalog/MyUCMDs && chown dyalog:dyalog /home/dyalog/MyUCMDs

[6] RUN mkdir /src /tests

[7] RUN chown dyalog:dyalog /src /tests

[8] COPY entrypoint.sh /entrypoint
[9] RUN chmod +x /entrypoint

[10] RUN sed -i "s/{{DYALOG_RELEASE}}/${DYALOG_RELEASE}/" /entrypoint

[11] USER dyalog

[12] ENV LOAD "/src"

[13] ENTRYPOINT ["/entrypoint"]

[1] FROM dyalog/dyalog

[2] ARG DYALOG_RELEASE=18.2

[3] USER root

[4] RUN mkdir -p /home/dyalog/MyUCMDs

[5] RUN chmod 777 /home/dyalog/MyUCMDs && chown dyalog:dyalog /home/dyalog/MyUCMDs

[6] RUN mkdir /src /tests

[7] RUN chown dyalog:dyalog /src /tests

[8] COPY entrypoint.sh /entrypoint
[9] RUN chmod +x /entrypoint

[10] RUN sed -i "s/{{DYALOG_RELEASE}}/${DYALOG_RELEASE}/" /entrypoint

[11] USER dyalog

[12] ENV LOAD "/src"

[13] ENTRYPOINT ["/entrypoint"]

[1] FROM dyalog/dyalog

[2] ARG DYALOG_RELEASE=18.2

[3] USER root

[4] RUN mkdir -p /home/dyalog/MyUCMDs

[5] RUN chmod 777 /home/dyalog/MyUCMDs && chown dyalog:dyalog /home/dyalog/MyUCMDs

[6] RUN mkdir /src /tests

[7] RUN chown dyalog:dyalog /src /tests

[8] COPY entrypoint.sh /entrypoint
[9] RUN chmod +x /entrypoint

[10] RUN sed -i "s/{{DYALOG_RELEASE}}/${DYALOG_RELEASE}/" /entrypoint

[11] USER dyalog

[12] ENV LOAD "/src"

[13] ENTRYPOINT ["/entrypoint"]

#!/bin/bash

export DYALOG=/opt/mdyalog/{{DYALOG_RELEASE}}/64/unicode/
export LD_LIBRARY_PATH="${DYALOG}:${LD_LIBRARY_PATH}"
export WSPATH=$WSPATH:${DYALOG}/ws
export TERM=dumb
export APL_TEXTINAPLCORE=${APL_TEXTINAPLCORE-1}
export TRACE_ON_ERROR=0
export SESSION_FILE="${SESSION_FILE-$DYALOG/default.dse}"

$DYALOG/dyalog -b -s

Docker and GitHub Actions38

Task 3: Build container locally

docker build -t dytest .

Docker and GitHub Actions

docker run --rm \
 -v
"$(pwd)/DBuildTest/DyalogBuild.dyalog:/home/dyalog/
MyUCMDs/DyalogBuild.dyalog" \
 {FILE SYSTEM MOUNTS}
 -v "$(pwd)/tests:/tests" \
 dytest

39

Container name

Remove container on exit

The messy bits in
the middle

Task 4: Run it (on macOS or Linux)

Docker and GitHub Actions40

Task 4: Run it (on macOS or Linux)

docker run --rm \
 -v
"$(pwd)/DBuildTest/DyalogBuild.dyalog:/home/dyalog/
MyUCMDs/DyalogBuild.dyalog" \
 -v "$(pwd)/src:/src" \
 -v "$(pwd)/tests:/tests" \
 dytest

Docker and GitHub Actions41

Task 4: Run it (on macOS or Linux)

docker run --rm \
 -v
"$(pwd)/DBuildTest/DyalogBuild.dyalog:/home/dyalog/
MyUCMDs/DyalogBuild.dyalog" \
 -v "$(pwd)/src:/src" \
 -v "$(pwd)/tests:/tests" \
 dytest

Docker and GitHub Actions42

Task 4: Run it (on macOS or Linux)

docker run --rm \
 -v
"$(pwd)/DBuildTest/DyalogBuild.dyalog:/home/dyalog/
MyUCMDs/DyalogBuild.dyalog" \
 -v "$(pwd)/src:/src" \
 -v "$(pwd)/tests:/tests" \
 dytest

Docker and GitHub Actions43

Task 4: Run it (Windows PowerShell)

docker run --rm `
 -v
"${PWD}/DBuildTest/DyalogBuild.dyalog:/home/dyalog/
MyUCMDs/DyalogBuild.dyalog" `
 -v "${PWD}/src:/src" `
 -v "${PWD}/tests:/tests" `
 dytest

% docker run --rm \
 -v "$(pwd)/DBuildTest/ {∘∘∘} /DyalogBuild.dyalog" \
 -v "$(pwd)/src:/src" \
 -v "$(pwd)/tests:/tests" \
 dytest
Link Warning: ⎕SE.Link.Create: .NET or .NetCore not available
- watch defaults to 'ns'
Linked: # → /src

Rebuilding user command cache... done
All tests passed

Docker and GitHub Actions45

GitHub Actions

name: Run Dyalog APL Unit Tests

on:
 push:
 branches:
 - main

jobs:
 run-dyalog:
 runs-on: ubuntu-latest

 steps:
 - name: Checkout code
 uses: actions/checkout@v2
 with:
 submodules: 'recursive'
 fetch-depth: 0

Which events trigger the Action?

What kind of O/S should the Action runner use?

Check out our repository

...including submodules

...pushes to the main branch

Use GitHub's "checkout" action

- name: Build custom Docker image
 run: docker build -t dytest .

 #]dtest requires write access to /tests
 - name: Set permissions for /tests
 run: chmod 777 tests

 - name: Run unit tests
 run: |
 docker run --rm \
 -v "${{ github.workspace
}}/DBuildTest/DyalogBuild.dyalog:/home/dyalog/MyUCMDs/DyalogBuild.dyalog"
\
 -v "${{ github.workspace }}/src:/src" \
 -v "${{ github.workspace }}/tests:/tests" \
 dytest

Build container

Tweak permissions

Run container

Docker and GitHub Actions48

Task 5: Action!

Docker and GitHub Actions49

git add src/mysum.aplf

git commit -m 'Make a test fail'

git push origin main

Git cheat-sheet

Docker and GitHub Actions50

⬢ We executed our tests from the shell using LOAD

⬢ We ran our tests in a Docker container

⬢ We deployed our Docker container using a GitHub Action

⬢ Now our every commit triggers a full test run.

Summary

Docker and GitHub Actions51

⬢ We executed our tests from the shell using LOAD

⬢ We ran our tests in a Docker container

⬢ We deployed our Docker container using a GitHub Action

⬢ Now our every commit triggers a full test run.

Summary

Docker and GitHub Actions52

⬢ We executed our tests from the shell using LOAD

⬢ We ran our tests in a Docker container

⬢ We deployed our Docker container using a GitHub Action

⬢ Now our every commit triggers a full test run.

Summary

Docker and GitHub Actions53

⬢ We executed our tests from the shell using LOAD

⬢ We ran our tests in a Docker container

⬢ We deployed our Docker container using a GitHub Action

⬢ Now our every commit triggers a full test run.

Summary

	Slide 1: Part 3: Testing Dyalog with Docker and GitHub Actions
	Slide 2
	Slide 3: Aims
	Slide 4: Aims
	Slide 5: Aims
	Slide 6: Pre-requisites
	Slide 7: GitHub Desktop
	Slide 8: DEMO
	Slide 9: Task: Fork 'n Clone
	Slide 10: Task: Fork 'n Clone
	Slide 11: Fork...
	Slide 12: Enable workflows...
	Slide 13: ...and Clone
	Slide 14: Console jocks:
	Slide 15
	Slide 16: GitHub Actions: Continuous integration
	Slide 17: Continuous Integration?
	Slide 18: Continuous Integration?
	Slide 19: Docker?
	Slide 20: Docker?
	Slide 21: Docker?
	Slide 22: Docker?
	Slide 23: Project Layout
	Slide 24: A DTest Function
	Slide 25: Task: Run]dtest manually
	Slide 26: Running tests from the command line
	Slide 27: Task: Run tests from shell
	Slide 28: Task: Make a test fail!
	Slide 29: The Run function
	Slide 30: Run
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Task 3: Build container locally
	Slide 39: Task 4: Run it (on macOS or Linux)
	Slide 40: Task 4: Run it (on macOS or Linux)
	Slide 41: Task 4: Run it (on macOS or Linux)
	Slide 42: Task 4: Run it (on macOS or Linux)
	Slide 43: Task 4: Run it (Windows PowerShell)
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49: Git cheat-sheet
	Slide 50: Summary
	Slide 51: Summary
	Slide 52: Summary
	Slide 53: Summary

