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Who am I?
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Who are any of us? 

For now we see but dimly, as in a mirror….
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Introduction to Co-dfns
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 A compiled implementation of APL
 Multiple hardware platforms

 Static analysis of APL

 Multiple workloads

 Flexible backend design

 Low overhead, high productivity APL

 Flexible integration

What is Co-dfns?
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 A guide to APL programming techniques
 Tree “wrangling” and manipulation

 Architecture design

 APL optimization techniques

 Parallel techniques

 Coding style

 Low abstraction coding techniques

What is Co-dfns?
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 A tool for scaling APL
 Domains

 Performance

 Platforms

 Integrations

 Experiments/design

What is Co-dfns?
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Target Use Cases
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 Leverage the GPU for APL computation

 Best with primitives over large arrays

 Heavy data-crunching

 Computationally expensive algorithms

 “Hot spots” and “Kernels”

 Simulation, LLMs, Time Series, Graphs, …

Use Case #1: GPUs
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 Inherently scalar code
 Small utility functions
 Called extremely often
 Incur excessive interpreter overhead

 Memory churn

 Execution churn

 Jay Foad’s Compiler

Use Case #2: Scalar Hot Spots



Co-dfns: Roadmap and Update 202410

 Co-dfns has a static, offline parser
 Linting
 Traditional static analysis
 Migrations

 Older versions

 Different vendors

 Refactoring

Use Case #3: Static Analysis
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 Low overhead packaging/deployment

 Environments lacking interpreter support

 Embedded environments

 “Hostile” deployment environments

 Different language platforms
 JavaScript/WASM, Rust, Java, C#, etc.

Use Case #4: Integration
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Traditional APL
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 Improve integration with existing code

 Support wider range of domains

 Leverage some dynamic features

 Static analysis/migration

 Parser support vs. Executable support

Traditional APL Features
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 Parser-only support:
 :Class, OOP

 .NET, Win32

 HTMLRenderer

 Interpreter Quad functions

 Non-Dyalog dialects

 Executable support:
 Trad-fns

 Structured statements

 Nested Namespaces

 Execute

 Generic Quad functions

Traditional APL: Parse vs. Exec
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 Produce a viable static AST

 Aware of the semantics of these features
 Type inference

 Name resolution

 Control flow

 No executability

Parser-only Supported Features
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Trad-fns
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 Dynamic scoping
 Can be inherently “broken”

 Dynamic nameclasses for variables

 Functions that are “name builders”

 Functions called only internally (shadowed)

 Functions called at the root-level

Trad-fns: Scoping concerns
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 Lexically “compatible”
 Don’t shadow nameclasses of free variables

 Don’t change “effective” nameclass

 Statically computable call graph

 Lexical/global scope

 Shadowed variables can “close” free vars

Trad-fns: Scoping Approach
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 Parser can be parameterized with 
additional nameclass information
 Resolves ambiguous situations

 Allows for “trust me” behaviors

 Supports a wider range of otherwise 
unparseable programs

Lending a helping hand
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Current Progress
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 Static Parser

 Runtime memory overheads

 GPU parallel algorithms

 Code generation

 Compiler optimizations

 Benchmarking

Current Efforts
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 Partial trad-fns support

 Tokenization:
 Structured statements

 OOP

 Non-dyalog quad funcs (parameterization)

 Dyalog Quad functions

Progress: Parser
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 A major limitation on performance

 Hurts “scalar APL” and utility functions

 Creates excessive constant overheads

 Goal: Reduce or eliminate

Progress: Memory Overheads
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Benchmarking
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 Black Scholes

 N-body

 MultiGrid (NAS Parallel)

 Volatility / Time series

 QuickHull

 FlashAttention

 Mystika (Crypto, Bignum)

 LLM Transformers

 U-net

 Graphs / Tree (Compiler)

 Small funct. Sampler

 QuAPL

Benchmarking
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 Typical: 10×

 Low end: 2 – 4×

 High end: 40 – 100×

Benchmarking
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Recommendations
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 Current versions have issues on Mac

 V4 is still the best to use for GPU:
 Flat arrays

 Primitives applied to large arrays

Recommendations/Limits
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 V5+:
 Most language features for dfns

 No error guards

 No selective assignment

 CPU + GPU

 Extra features and APIs

Recommendations/Limits
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Some Unique Features
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 Self-contained EXEs for all platforms

 High degree of integration with backends

 Platform agnostic Foreign Functions

 Extensible runtime for operators/funcs.

 Dual-licensed (Dyalog + AGPL)

Unique Features
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Thank you.
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