
Glasgow 2024

Co-dfns:
Roadmap and Update

Aaron W. Hsu
aaron@dyalog.com



Co-dfns: Roadmap and Update 20241

Who am I?



Co-dfns: Roadmap and Update 20242

Who are any of us? 

For now we see but dimly, as in a mirror….



Co-dfns: Roadmap and Update 20243

Introduction to Co-dfns



Co-dfns: Roadmap and Update 20244

 A compiled implementation of APL
 Multiple hardware platforms

 Static analysis of APL

 Multiple workloads

 Flexible backend design

 Low overhead, high productivity APL

 Flexible integration

What is Co-dfns?



Co-dfns: Roadmap and Update 20245

 A guide to APL programming techniques
 Tree “wrangling” and manipulation

 Architecture design

 APL optimization techniques

 Parallel techniques

 Coding style

 Low abstraction coding techniques

What is Co-dfns?



Co-dfns: Roadmap and Update 20246

 A tool for scaling APL
 Domains

 Performance

 Platforms

 Integrations

 Experiments/design

What is Co-dfns?



Co-dfns: Roadmap and Update 20247

Target Use Cases



Co-dfns: Roadmap and Update 20248

 Leverage the GPU for APL computation

 Best with primitives over large arrays

 Heavy data-crunching

 Computationally expensive algorithms

 “Hot spots” and “Kernels”

 Simulation, LLMs, Time Series, Graphs, …

Use Case #1: GPUs



Co-dfns: Roadmap and Update 20249

 Inherently scalar code
 Small utility functions
 Called extremely often
 Incur excessive interpreter overhead

 Memory churn

 Execution churn

 Jay Foad’s Compiler

Use Case #2: Scalar Hot Spots



Co-dfns: Roadmap and Update 202410

 Co-dfns has a static, offline parser
 Linting
 Traditional static analysis
 Migrations

 Older versions

 Different vendors

 Refactoring

Use Case #3: Static Analysis



Co-dfns: Roadmap and Update 202411

 Low overhead packaging/deployment

 Environments lacking interpreter support

 Embedded environments

 “Hostile” deployment environments

 Different language platforms
 JavaScript/WASM, Rust, Java, C#, etc.

Use Case #4: Integration



Co-dfns: Roadmap and Update 202412

Traditional APL



Co-dfns: Roadmap and Update 202413

 Improve integration with existing code

 Support wider range of domains

 Leverage some dynamic features

 Static analysis/migration

 Parser support vs. Executable support

Traditional APL Features



Co-dfns: Roadmap and Update 202414

 Parser-only support:
 :Class, OOP

 .NET, Win32

 HTMLRenderer

 Interpreter Quad functions

 Non-Dyalog dialects

 Executable support:
 Trad-fns

 Structured statements

 Nested Namespaces

 Execute

 Generic Quad functions

Traditional APL: Parse vs. Exec



Co-dfns: Roadmap and Update 202415

 Produce a viable static AST

 Aware of the semantics of these features
 Type inference

 Name resolution

 Control flow

 No executability

Parser-only Supported Features



Co-dfns: Roadmap and Update 202416

Trad-fns



Co-dfns: Roadmap and Update 202417

 Dynamic scoping
 Can be inherently “broken”

 Dynamic nameclasses for variables

 Functions that are “name builders”

 Functions called only internally (shadowed)

 Functions called at the root-level

Trad-fns: Scoping concerns



Co-dfns: Roadmap and Update 202418

 Lexically “compatible”
 Don’t shadow nameclasses of free variables

 Don’t change “effective” nameclass

 Statically computable call graph

 Lexical/global scope

 Shadowed variables can “close” free vars

Trad-fns: Scoping Approach



Co-dfns: Roadmap and Update 202419

 Parser can be parameterized with 
additional nameclass information
 Resolves ambiguous situations

 Allows for “trust me” behaviors

 Supports a wider range of otherwise 
unparseable programs

Lending a helping hand



Co-dfns: Roadmap and Update 202420

Current Progress



Co-dfns: Roadmap and Update 202421

 Static Parser

 Runtime memory overheads

 GPU parallel algorithms

 Code generation

 Compiler optimizations

 Benchmarking

Current Efforts



Co-dfns: Roadmap and Update 202422

 Partial trad-fns support

 Tokenization:
 Structured statements

 OOP

 Non-dyalog quad funcs (parameterization)

 Dyalog Quad functions

Progress: Parser



Co-dfns: Roadmap and Update 202423

 A major limitation on performance

 Hurts “scalar APL” and utility functions

 Creates excessive constant overheads

 Goal: Reduce or eliminate

Progress: Memory Overheads



Co-dfns: Roadmap and Update 202424

Benchmarking



Co-dfns: Roadmap and Update 202425

 Black Scholes

 N-body

 MultiGrid (NAS Parallel)

 Volatility / Time series

 QuickHull

 FlashAttention

 Mystika (Crypto, Bignum)

 LLM Transformers

 U-net

 Graphs / Tree (Compiler)

 Small funct. Sampler

 QuAPL

Benchmarking



Co-dfns: Roadmap and Update 202426

 Typical: 10×

 Low end: 2 – 4×

 High end: 40 – 100×

Benchmarking



Co-dfns: Roadmap and Update 202427

Recommendations



Co-dfns: Roadmap and Update 202428

 Current versions have issues on Mac

 V4 is still the best to use for GPU:
 Flat arrays

 Primitives applied to large arrays

Recommendations/Limits



Co-dfns: Roadmap and Update 202429

 V5+:
 Most language features for dfns

 No error guards

 No selective assignment

 CPU + GPU

 Extra features and APIs

Recommendations/Limits



Co-dfns: Roadmap and Update 202430

Some Unique Features



Co-dfns: Roadmap and Update 202431

 Self-contained EXEs for all platforms

 High degree of integration with backends

 Platform agnostic Foreign Functions

 Extensible runtime for operators/funcs.

 Dual-licensed (Dyalog + AGPL)

Unique Features



Co-dfns: Roadmap and Update 202432

Thank you.


	Slide 0: Co-dfns: Roadmap and Update
	Slide 1: Who am I?
	Slide 2
	Slide 3: Introduction to Co-dfns
	Slide 4: What is Co-dfns?
	Slide 5: What is Co-dfns?
	Slide 6: What is Co-dfns?
	Slide 7: Target Use Cases
	Slide 8: Use Case #1: GPUs
	Slide 9: Use Case #2: Scalar Hot Spots
	Slide 10: Use Case #3: Static Analysis
	Slide 11: Use Case #4: Integration
	Slide 12: Traditional APL
	Slide 13: Traditional APL Features
	Slide 14: Traditional APL: Parse vs. Exec
	Slide 15: Parser-only Supported Features
	Slide 16: Trad-fns
	Slide 17: Trad-fns: Scoping concerns
	Slide 18: Trad-fns: Scoping Approach
	Slide 19: Lending a helping hand
	Slide 20: Current Progress
	Slide 21: Current Efforts
	Slide 22: Progress: Parser
	Slide 23: Progress: Memory Overheads
	Slide 24: Benchmarking
	Slide 25: Benchmarking
	Slide 26: Benchmarking
	Slide 27: Recommendations
	Slide 28: Recommendations/Limits
	Slide 29: Recommendations/Limits
	Slide 30: Some Unique Features
	Slide 31: Unique Features
	Slide 32: Thank you.

