
Glasgow 2024

Performance Basics

Josh David



Performance Basics1

 Clone this repo to follow along with some examples

https://github.com/dyalog-training/2024-SA2

Introductions



Performance Basics2

=

Why does it matter?



Performance Basics3

 A balance between memory and time of program 
execution 

Performance



Performance Basics4

Compiled

Programming Languages 

Interpreted



Performance Basics5

– Overhead converting code at runtime

+ Immediate feedback

+ Interactive development

+ Specialised algorithms depending on data 

Dyalog '18: The Interpretive Advantage

Interpreted, dynamically typed

https://www.youtube.com/watch?v=-6no6N3i9Tg


Performance Basics6

 APL can dynamically decide which algorithm to use based 
on the shape and type of your data
 Important for benchmarking: test your algorithms against varying 

types and sizes 

The Interpretive Advantage



Performance Basics7

 How Computer Scientists discuss algorithm efficiency

 “Big O notation (with a capital letter O, not a zero), also 
called Landau's symbol, is a symbolism used in complexity 
theory, computer science, and mathematics to describe the 
asymptotic behavior of function.”
 https://web.mit.edu/16.070/www/lecture/big_o.pdf

Big O Notation



Performance Basics8

 How Computer Scientists discuss algorithm efficiency

 “Big O notation (with a capital letter O, not a zero), also 
called Landau's symbol, is a symbolism used in complexity 
theory, computer science, and mathematics to describe the 
asymptotic behavior of function. Basically, it tells you how 
fast a function grows or declines”
 https://web.mit.edu/16.070/www/lecture/big_o.pdf

Big O Notation



Performance Basics9

 How Computer Scientists discuss algorithm efficiency

 How does this function scale with input size?

Big O Notation



Performance Basics10

 Constants are ignored

 10n → n

 “Worst” or largest factor dominates 
 An algorithm with O(n^2) and O(n) is 

described as O(n^2)

Big O Notation



Performance Basics11

https://www.geeksforgeeks.org/analysis-algorithms-big-o-analysis/



Performance Basics12

* Useful to describe Space complexity as well!



Performance Basics13

 Useful for thinking about space complexity as well 
(memory)

 Different results for
 Best case 

 Worst case

 Average case

Big O Notation



Performance Basics14

https://www.bigocheatsheet.com/



Performance Basics15

 Can be tricky due to different underlying algorithms used 
in primitives

 Helpful to reason about it by investigating individual 
primitives (caveat: idioms)

 Actually profiling your algorithms against your known 
datatype/size is the best way to see how it scales

Big O Notation for APL



Performance Basics16

{⌈/+\(⊣-~)'('=(⍵∊'()')/⍵}
⍺∊⍵

⍺=⍵
⍺/⍵
  ~⍵
⍺-⍵
+\⍵
⌈/⍵

O(n×m)
O(n)
O(n)
O(n)
O(n)
O(n^2)
O(n)



Performance Basics17

{⌈/+\(⊣-~)'('=(⍵∊'()')/⍵}
⍺∊⍵

⍺=⍵
⍺/⍵
  ~⍵
⍺-⍵
+\⍵
⌈/⍵

O(n)
O(n)
O(n)
O(n)
O(n)
O(n^2)
O(n)



Performance Basics18

{⌈/+\(⊣-~)'('=(⍵∊'()')/⍵}
⍺∊⍵

⍺=⍵
⍺/⍵
  ~⍵
⍺-⍵
+\⍵
⌈/⍵

O(n)
O(n)
O(n)
O(n)
O(n)
O(n^2)
O(n)



Performance Basics19

{⌈/+\(⊣-~)'('=(⍵∊'()')/⍵}
⍺∊⍵

⍺=⍵
⍺/⍵
  ~⍵
⍺-⍵
+\⍵
⌈/⍵

O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)



Performance Basics20

 Write your own Pdepth function, and let’s compare times

Exercise: PDepth



Performance Basics21

Aim for 2× faster

      ]runtime -c "expr1" "expr2"

-50%    2× faster

+100%   2× slower

Timing



Performance Basics22

Try this now

      ]runtime -c "⎕DL 0.3" "⎕DL 0.6“

  ⎕dl 0.3 → 3.1E¯1 |   0% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕                     

* ⎕dl 0.6 → 6.1E¯1 | +96% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕ 

Timing



Performance Basics23

𝐹0 = 0, 𝐹1 = 1

𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2

Exercise: Fibonacci

https://www.sciencedirect.com/science/article/pii/S240584402303387X



Performance Basics24

fibRec←{               ⍝ Tail-recursive Fibonacci. 
    ⍺←0 1
    ⍵=0:⍬⍴⍺
    (1↓⍺,+/⍺)∇ ⍵-1
}

The following function illustrates the relationship between the 
Fibonacci sequence and rational approximations to the "golden mean" 
(Phi). 

fib←{1∧+∘÷/0,⍵/1}
     │ │   └───── continued fraction: 0 1 1 1 ...
     │ └───────── approximation to Phi-1: 0 1 0.5 0.666 ...
     └─────────── numerator of rational: 0 1 1 2 3 5 8 13 21 34 ...

fib ← (+.!∘⌽⍨⍳)       ⍝ Sum of binomial coefficients (Jay Foad)



Performance Basics25

In simple terms, simple arrays in memory:

[shape…], [elements in ravel order…]

The Array Model



Performance Basics26

In simple terms, simple arrays in memory:

2 3 4 ABCDEFGHIJKLMNOPQRSTUVWX

The Array Model



Performance Basics27

In simple terms, simple arrays in memory:

2 3 4 ABCDEFGHIJKLMNOPQRSTUVWX

The Array Model

ABCD
EFGH
IJKL

MNOP
QRST
UVWX 



Performance Basics28

In simple terms, nested arrays in memory:

The Array Model

┌────┬────┬────┐
│ABCD│EFGH│IJKL│
├────┼────┼────┤
│MNOP│QRST│UVWX│
└────┴────┴────┘



Performance Basics29

In simple terms, nested arrays in memory:

The Array Model
┌────┬────┬────┐
│ABCD│EFGH│IJKL│
├────┼────┼────┤
│MNOP│QRST│UVWX│
└────┴────┴────┘



Performance Basics30

 Use flat arrays where possible

 Vectors, unless utilising shape as part of computation

 Fewer, larger nests are better than many small nests

 Work on rows rather than columns (last axis principle)

Techniques for Array Performance



Performance Basics31

Sometimes easier to reason over individual units

 (scalar-scalar, row-row, scalar-list, matrix-matrix etc.) 

then loop over whole data set.

In APL, it is faster to apply fewer primitives to larger sets of 
data.

Move Loops Inside



Performance Basics32

Write equivalent functions using flat array techniques.

1. {∊⍵↑¨1}

2. {+/¨⍺⊂⍵}

3. {⊃(⊣,' ',⊢)/⍺↑' '(≠⊆⊢)⍵}

4. {⊃(⊣,' ',⊢)/⌽¨' '(≠⊆⊢)⍵} 

Exercise



Performance Basics33

Write equivalent functions using flat array techniques.
Use APLCart to find flat array equivalents.
1. {∊⍵↑¨1}

2. {+/¨⍺⊂⍵}

3. {⊃(⊣,' ',⊢)/⍺↑' '(≠⊆⊢)⍵}

4. {⊃(⊣,' ',⊢)/⌽¨' '(≠⊆⊢)⍵} 

Exercise



Performance Basics34

7↑w
┌──┬────┬──┬─────┬────┬───┬─────┐
│of│lots│of│words│some│are│words│
└──┴────┴──┴─────┴────┴───┴─────┘
      ≢w
10000
      ]runtime -c "w[⍋w]" "w[⍋↑w]"
                                                                  
  w[⍋w]  → 3.5E¯3 |   0% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕ 
  w[⍋↑w] → 1.5E¯3 | -56% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕

Mix nested vectors (sometimes)



Performance Basics35

w⍳'here' 'words' 'are' 'easy'
20 4 6 8

      w⍳⍥↑'here' 'words' 'are' 'easy'
20 4 6 8

      ]runtime -c "w⍳'here' 'words' 'are' 'easy'" "w⍳⍥↑'here' 'words' 'are' 'easy'"
                                                                                           
  w⍳'here' 'words' 'are' 'easy'   → 3.0E¯4 |   0% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕ 
  w⍳⍥↑'here' 'words' 'are' 'easy' → 1.3E¯4 | -57% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕ 

Mix nested vectors (sometimes)



Performance Basics36

 Set ⎕CT←0 before doing lookups on floats

Tip for searching



Performance Basics37

⎕DR

*On classic, 
characters are 
different

82 for 8 bit char

Value Data Type
111 bit Boolean
808 bits character
838 bits signed integer

16016 bits character
16316 bits signed integer
32032 bits character
32332 bits signed  integer

326Pointer (32-bit or 64-bit as appropriate)

64564 bits Floating
1287128 bits Decimal
1289128 bits Complex

Check the size of your data



Performance Basics38

 Come up with an expression to determine if a vector of 
items is a Character Array or not

 First, create a random vector of random characters and 
numbers

Exercise



Performance Basics39

 Create a variable that has a billion numbers between 0-1
 Hint: test your code on a smaller size first! 

 What’s the size of your variable, and how much memory 
does each element take? 

Exercise: A billion bools



Performance Basics40

 ⎕SIZE,⎕DR, ⎕WA will squeeze your data

 Use (181⌶) to check the “unsqueezed” type 

Squeezing



Performance Basics41

 Applying a Boolean mask to a table is a common operation. 
Sometimes we want to leave the first bit (header row) 
included. Write an APL function to convert the first bit to a 
1

Exercise: Modify a boolean list



Performance Basics42

Exercise: Modify Boolean list

]runtime -c "{1,1↓⍵}b" "{⍵∨(≢⍵)↑1}b" "{1(@1)⍵}b"

{1,1↓⍵}b2    → 7.2E¯5 |   0% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕ 
{⍵∨(≢⍵)↑1}b2 → 2.6E¯5 | -65% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕ 
{1(@1)⍵}b2   → 2.0E¯5 | -73% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕ 



Performance Basics43

MAXWS

 How much memory APL is allowed to take is controlled by 
the MAXWS option



Performance Basics44

 ⎕WA will tell you how much Workspace is available

 An expensive operation, use judiciously 
 “Quick WA” i-beam better if needed at runtime 

Garbage Collection



Performance Basics45

 Dyalog reserves a special WS Full Buffer for handling WS 
FULL errors. 

 The default size of this buffer is (1MB)⌊(0.01×⎕WA)

WS FULL



Performance Basics46

)copy dfns wsreq ∇ hwm←mem expr
 {}⎕WA
 {}0(2000⌶)14
 hwm←2000⌶14
 {}⍎expr
 hwm-⍨←2000⌶14
∇

Memory vs Time consumption



Performance Basics47

 DefineVars

 What’s the size of each variable?
  {⍵,⍪SIZE ⍵}⎕THIS.⎕NL-2 

 What is the Data Representation of n. How can that 
help you deduce the size? 

Exercise: Lasagna Problem



Performance Basics48

⎕profile ‘clear’

⎕profile ‘start’

 …

⎕profile ‘stop’

]profile

Profiling an Application



Performance Basics49

Demo/Exercise



Performance Basics50

 Allows the interpreter to apply a combination of 
primitives in a more performant way

Idiom Recognition



Performance Basics51

 See Programming Reference Guide for 
full list

 Use syntax highlighting to help spot 

Idiom List

https://docs.dyalog.com/latest/Dyalog%20Programming%20Reference%20Guide.pdf#page=39


Performance Basics52

 Use syntax highlighting 
to help identify 

Idiom List



Performance Basics53

Idiom List

v ← ?1e6⍴100
      ]runtime -c "{⍺,≢⍵}⌸v" "{⍺,(≢⍵)}⌸v"

{⍺,≢⍵}⌸v   → 9.6E¯4 |    0% ⎕⎕⎕⎕⎕⎕⎕ 
{⍺,(≢⍵)}⌸v → 5.7E¯3 | +494% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕ 



Performance Basics54

{⊂⍵}  {⍺⍵}   {⍺}   ⊣

{≢ ⍵}   {⍺(≢ ⍵)}   {⍺,≢ ⍵}
{≢∪⍵}   {⍺(≢∪⍵)}  {⍺,≢∪⍵}

{F/⍵} {⍺(F/⍵)} {⍺,F/⍵}
{F⌿⍵} {⍺(F⌿⍵)} {⍺,F⌿⍵}

 for Boolean Y if F is one of ∧∨=≠+
 for numeric Y if F is one of +⌈⌊

Set Phrases — key F⌸Y



Performance Basics55

{⊂⍵}  {≢⍵}

{+/⍵} {⌈/⍵} {⌊/⍵}

{⍺,+/⍵} {⍺(f/⍵)}

Set Phrases — key F⌸



Performance Basics56

{⊂⍵}  {≢⍵}

{+/⍵} {⌈/⍵} {⌊/⍵}

      ⎕RL←42 ⋄ key←(⎕A[?30⍴8]),⍪(?30⍴5) ⋄ (≢,≢∘∪)key

30 20

      ]runtime -c "{≢⍵}⌸key" "{≢⊢⍵}⌸key"

                                                                       

  {≢⍵}⌸key  → 1.2E¯6 |     0% ⎕                                        

  {≢⊢⍵}⌸key → 3.2E¯5 | +2626% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕

Set Phrases — key F⌸



Performance Basics57

 In APL, each item of a nested array is a pointer to an array, 
and every array has a header and data. On a 64-bit system, 
a pointer takes 64 bits. 

 This can be a rather inefficient way to store data

Inverted Tables



Performance Basics58

Pointer bloat in “verted” table



Performance Basics59

# of bits per item

# of items

# of bytes for the items, rounded up     
to the next multiple of 8

# of bytes for the header

Size of a verted table
size←{24+(8×≢⍴⍵) + 8×⌈64÷⍨(×/⍴⍵)×⌊0.1×⎕dr ⍵}

⌊0.1×⎕dr ⍵  

×/⍴⍵         

8×⌈64÷⍨ 

       
24+(8×≢⍴⍵) 



Performance Basics60

 In contrast, for an inverted table, each column is a simple 
array, so
 the number of pointers is the same as the number of columns

 the number of headers is the same as the number of columns, plus 1 
for the table itself.

Moreover, the data for each column are contiguous in memory, 
resulting in faster access.

Size of an “Inverted” table



Performance Basics61



Performance Basics62

Exercise: Invert a regular table

 Load in the file as a regular table 
 ⎕CSV path ⍬ 4 

 Check the size of the table

 Transform the table to an inverted style

 What’s the size difference?



Performance Basics63

 8⌶

Exercise: Try lookup of IVT vs VT 



Performance Basics64

 Write a function that replaces infrequently occurring 
items with a shorter id
 (∪x)⍳x

Data table normalization



Performance Basics65

 APL is implicitly a Parallel language

 Many of the primitives already automatically 
parallelized by the interpreter 

Parallelization: Automatic



Performance Basics66

 Overhead in parallelization not worth it if your arrays 
are small
 Most APL arrays are small! 

 Parallel programming requires care – many applications 
depend on side effects and will have race conditions

Not as simple



Performance Basics67

 & operator

 F & arg

 Not a real OS thread, the interpreter handles 
multitasking

 Useful for running a program in the background, 
without waiting (asynchronous) 

Green Threads



Performance Basics68

 Immediately returns the TID 

 Look into ⎕TPUT/⎕TGET (tokens) for 
communicating between threads

 ⎕TSYNC for synchronization

&



Performance Basics69

 How long do the following expressions take to return and run?

Quiz

• ⎕DL 1
• ⎕DL¨1 2 
• ⎕DL&¨ 1 2 
• ⎕TSYNC ⎕DL&¨1 2
• ⎕DL II¨ 1 2



Performance Basics70

 Isolates are a form of explicit parallelization 
 The task is left to the programmer to decide when things ought 

to be run in parallel 

 Different from “Green Threads”(&)
 Actual OS processes used 

Isolates



Performance Basics71

Isolates

X←1 2 3

X←4 5

X←6 7

I3←¤¨3⍴⊂''

I3.({+/⍵÷⍴⍵}X)
I3.X←(1 2 3)(4 5)(6 7)   

2 4.5 6.5

71



Performance Basics72

The cosine similarity encodes correlation between two vectors

∘.CosineSimilarity⍨(0 0 1)(0 1 1)(1 0 0)
1            0.7071067812 0
0.7071067812 1            0
0            0            1

Exercise



Performance Basics73

The cosine similarity encodes correlation between two vectors

 CosineSimilarity←{

    Abs←{0.5*⍨+/⍵*2}

    (⍺+.×⍵)÷⍺×⍥Abs ⍵

 }

Exercise



Performance Basics74

 Run the cosine similarity using isolates, chunking the data 
into partitions first

Exercise



Performance Basics75

 Is there a faster way to write the earlier function, without 
isolates? 

Exercise



Performance Basics76

Example: Maximum Difference

 Given a list of numbers, compute the largest difference 
between any two numbers in the list.

{⌈/,∘.-⍨⍵}

{⍺←0 ⋄ 0∊⍴⍵:⍺ ⋄ (⍺⌈⌈/|⍵-⊃⍵)∇1↓⍵}

Overcomputing



Performance Basics77

Overcomputing



Performance Basics78

 Don’t get lost in micro-optimizations 

 Use judgement on code clarity vs performance

Practical notes


	Default Section
	Slide 0: Performance Basics
	Slide 1: Introductions
	Slide 2: Why does it matter?
	Slide 3: Performance
	Slide 4: Programming Languages 
	Slide 5: Interpreted, dynamically typed
	Slide 6: The Interpretive Advantage

	Big O Notation
	Slide 7: Big O Notation
	Slide 8: Big O Notation
	Slide 9: Big O Notation
	Slide 10: Big O Notation
	Slide 11
	Slide 12
	Slide 13: Big O Notation
	Slide 14
	Slide 15: Big O Notation for APL
	Slide 16: {⌈/+\(⊣-~)'('=(⍵∊'()')/⍵}
	Slide 17: {⌈/+\(⊣-~)'('=(⍵∊'()')/⍵}
	Slide 18: {⌈/+\(⊣-~)'('=(⍵∊'()')/⍵}
	Slide 19: {⌈/+\(⊣-~)'('=(⍵∊'()')/⍵}
	Slide 20: Exercise: PDepth

	Benchmarking Time
	Slide 21: Timing
	Slide 22: Timing
	Slide 23: Exercise: Fibonacci
	Slide 24

	The Array Model
	Slide 25: The Array Model
	Slide 26: The Array Model
	Slide 27: The Array Model
	Slide 28: The Array Model
	Slide 29: The Array Model
	Slide 30: Techniques for Array Performance
	Slide 31: Move Loops Inside
	Slide 32: Exercise
	Slide 33: Exercise

	Benchmarking Memory
	Slide 34: Mix nested vectors (sometimes)
	Slide 35: Mix nested vectors (sometimes)
	Slide 36: Tip for searching
	Slide 37: Check the size of your data
	Slide 38: Exercise
	Slide 39: Exercise: A billion bools
	Slide 40: Squeezing
	Slide 41: Exercise: Modify a boolean list
	Slide 42: Exercise: Modify Boolean list
	Slide 43: MAXWS
	Slide 44: Garbage Collection
	Slide 45: WS FULL
	Slide 46: Memory vs Time consumption
	Slide 47: Exercise: Lasagna Problem

	Profiling
	Slide 48: Profiling an Application
	Slide 49: Demo/Exercise

	Idioms
	Slide 50: Idiom Recognition
	Slide 51: Idiom List
	Slide 52: Idiom List
	Slide 53: Idiom List
	Slide 54: Set Phrases — key F⌸Y
	Slide 55: Set Phrases — key F⌸
	Slide 56: Set Phrases — key F⌸

	Inverted Tables
	Slide 57: Inverted Tables
	Slide 58: Pointer bloat in “verted” table
	Slide 59: Size of a verted table
	Slide 60: Size of an “Inverted” table
	Slide 61
	Slide 62: Exercise: Invert a regular table
	Slide 63: Exercise: Try lookup of IVT vs VT 
	Slide 64: Data table normalization

	Parralelization
	Slide 65: Parallelization: Automatic
	Slide 66: Not as simple
	Slide 67: Green Threads
	Slide 68: &
	Slide 69: Quiz

	Isolates
	Slide 70: Isolates
	Slide 71: Isolates
	Slide 72: Exercise
	Slide 73: Exercise
	Slide 74: Exercise
	Slide 75: Exercise
	Slide 76: Overcomputing
	Slide 77: Overcomputing
	Slide 78: Practical notes


