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 Clone this repo to follow along with some examples

https://github.com/dyalog-training/2024-SA2

Introductions
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=

Why does it matter?
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 A balance between memory and time of program 
execution 

Performance
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Compiled

Programming Languages 

Interpreted
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– Overhead converting code at runtime

+ Immediate feedback

+ Interactive development

+ Specialised algorithms depending on data 

Dyalog '18: The Interpretive Advantage

Interpreted, dynamically typed

https://www.youtube.com/watch?v=-6no6N3i9Tg
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 APL can dynamically decide which algorithm to use based 
on the shape and type of your data
 Important for benchmarking: test your algorithms against varying 

types and sizes 

The Interpretive Advantage
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 How Computer Scientists discuss algorithm efficiency

 “Big O notation (with a capital letter O, not a zero), also 
called Landau's symbol, is a symbolism used in complexity 
theory, computer science, and mathematics to describe the 
asymptotic behavior of function.”
 https://web.mit.edu/16.070/www/lecture/big_o.pdf

Big O Notation
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 How Computer Scientists discuss algorithm efficiency

 “Big O notation (with a capital letter O, not a zero), also 
called Landau's symbol, is a symbolism used in complexity 
theory, computer science, and mathematics to describe the 
asymptotic behavior of function. Basically, it tells you how 
fast a function grows or declines”
 https://web.mit.edu/16.070/www/lecture/big_o.pdf

Big O Notation
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 How Computer Scientists discuss algorithm efficiency

 How does this function scale with input size?

Big O Notation
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 Constants are ignored

 10n → n

 “Worst” or largest factor dominates 
 An algorithm with O(n^2) and O(n) is 

described as O(n^2)

Big O Notation
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https://www.geeksforgeeks.org/analysis-algorithms-big-o-analysis/



Performance Basics12

* Useful to describe Space complexity as well!
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 Useful for thinking about space complexity as well 
(memory)

 Different results for
 Best case 

 Worst case

 Average case

Big O Notation
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https://www.bigocheatsheet.com/
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 Can be tricky due to different underlying algorithms used 
in primitives

 Helpful to reason about it by investigating individual 
primitives (caveat: idioms)

 Actually profiling your algorithms against your known 
datatype/size is the best way to see how it scales

Big O Notation for APL
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 Write your own Pdepth function, and let’s compare times

Exercise: PDepth
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Aim for 2× faster

      ]runtime -c "expr1" "expr2"

-50%    2× faster

+100%   2× slower

Timing
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Try this now

      ]runtime -c "⎕DL 0.3" "⎕DL 0.6“

  ⎕dl 0.3 → 3.1E¯1 |   0% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕                     

* ⎕dl 0.6 → 6.1E¯1 | +96% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕ 

Timing
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𝐹0 = 0, 𝐹1 = 1

𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2

Exercise: Fibonacci

https://www.sciencedirect.com/science/article/pii/S240584402303387X
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fibRec←{               ⍝ Tail-recursive Fibonacci. 
    ⍺←0 1
    ⍵=0:⍬⍴⍺
    (1↓⍺,+/⍺)∇ ⍵-1
}

The following function illustrates the relationship between the 
Fibonacci sequence and rational approximations to the "golden mean" 
(Phi). 

fib←{1∧+∘÷/0,⍵/1}
     │ │   └───── continued fraction: 0 1 1 1 ...
     │ └───────── approximation to Phi-1: 0 1 0.5 0.666 ...
     └─────────── numerator of rational: 0 1 1 2 3 5 8 13 21 34 ...

fib ← (+.!∘⌽⍨⍳)       ⍝ Sum of binomial coefficients (Jay Foad)
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In simple terms, simple arrays in memory:

[shape…], [elements in ravel order…]

The Array Model
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In simple terms, simple arrays in memory:

2 3 4 ABCDEFGHIJKLMNOPQRSTUVWX

The Array Model
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In simple terms, simple arrays in memory:

2 3 4 ABCDEFGHIJKLMNOPQRSTUVWX

The Array Model

ABCD
EFGH
IJKL

MNOP
QRST
UVWX 
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In simple terms, nested arrays in memory:

The Array Model

┌────┬────┬────┐
│ABCD│EFGH│IJKL│
├────┼────┼────┤
│MNOP│QRST│UVWX│
└────┴────┴────┘
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In simple terms, nested arrays in memory:

The Array Model
┌────┬────┬────┐
│ABCD│EFGH│IJKL│
├────┼────┼────┤
│MNOP│QRST│UVWX│
└────┴────┴────┘
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 Use flat arrays where possible

 Vectors, unless utilising shape as part of computation

 Fewer, larger nests are better than many small nests

 Work on rows rather than columns (last axis principle)

Techniques for Array Performance
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Sometimes easier to reason over individual units

 (scalar-scalar, row-row, scalar-list, matrix-matrix etc.) 

then loop over whole data set.

In APL, it is faster to apply fewer primitives to larger sets of 
data.

Move Loops Inside
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Write equivalent functions using flat array techniques.

1. {∊⍵↑¨1}

2. {+/¨⍺⊂⍵}

3. {⊃(⊣,' ',⊢)/⍺↑' '(≠⊆⊢)⍵}

4. {⊃(⊣,' ',⊢)/⌽¨' '(≠⊆⊢)⍵} 

Exercise
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Write equivalent functions using flat array techniques.
Use APLCart to find flat array equivalents.
1. {∊⍵↑¨1}

2. {+/¨⍺⊂⍵}

3. {⊃(⊣,' ',⊢)/⍺↑' '(≠⊆⊢)⍵}

4. {⊃(⊣,' ',⊢)/⌽¨' '(≠⊆⊢)⍵} 

Exercise
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7↑w
┌──┬────┬──┬─────┬────┬───┬─────┐
│of│lots│of│words│some│are│words│
└──┴────┴──┴─────┴────┴───┴─────┘
      ≢w
10000
      ]runtime -c "w[⍋w]" "w[⍋↑w]"
                                                                  
  w[⍋w]  → 3.5E¯3 |   0% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕ 
  w[⍋↑w] → 1.5E¯3 | -56% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕

Mix nested vectors (sometimes)
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w⍳'here' 'words' 'are' 'easy'
20 4 6 8

      w⍳⍥↑'here' 'words' 'are' 'easy'
20 4 6 8

      ]runtime -c "w⍳'here' 'words' 'are' 'easy'" "w⍳⍥↑'here' 'words' 'are' 'easy'"
                                                                                           
  w⍳'here' 'words' 'are' 'easy'   → 3.0E¯4 |   0% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕ 
  w⍳⍥↑'here' 'words' 'are' 'easy' → 1.3E¯4 | -57% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕ 

Mix nested vectors (sometimes)
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 Set ⎕CT←0 before doing lookups on floats

Tip for searching
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⎕DR

*On classic, 
characters are 
different

82 for 8 bit char

Value Data Type
111 bit Boolean
808 bits character
838 bits signed integer

16016 bits character
16316 bits signed integer
32032 bits character
32332 bits signed  integer

326Pointer (32-bit or 64-bit as appropriate)

64564 bits Floating
1287128 bits Decimal
1289128 bits Complex

Check the size of your data
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 Come up with an expression to determine if a vector of 
items is a Character Array or not

 First, create a random vector of random characters and 
numbers

Exercise
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 Create a variable that has a billion numbers between 0-1
 Hint: test your code on a smaller size first! 

 What’s the size of your variable, and how much memory 
does each element take? 

Exercise: A billion bools
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 ⎕SIZE,⎕DR, ⎕WA will squeeze your data

 Use (181⌶) to check the “unsqueezed” type 

Squeezing
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 Applying a Boolean mask to a table is a common operation. 
Sometimes we want to leave the first bit (header row) 
included. Write an APL function to convert the first bit to a 
1

Exercise: Modify a boolean list
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Exercise: Modify Boolean list

]runtime -c "{1,1↓⍵}b" "{⍵∨(≢⍵)↑1}b" "{1(@1)⍵}b"

{1,1↓⍵}b2    → 7.2E¯5 |   0% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕ 
{⍵∨(≢⍵)↑1}b2 → 2.6E¯5 | -65% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕ 
{1(@1)⍵}b2   → 2.0E¯5 | -73% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕ 
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MAXWS

 How much memory APL is allowed to take is controlled by 
the MAXWS option
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 ⎕WA will tell you how much Workspace is available

 An expensive operation, use judiciously 
 “Quick WA” i-beam better if needed at runtime 

Garbage Collection
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 Dyalog reserves a special WS Full Buffer for handling WS 
FULL errors. 

 The default size of this buffer is (1MB)⌊(0.01×⎕WA)

WS FULL
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)copy dfns wsreq ∇ hwm←mem expr
 {}⎕WA
 {}0(2000⌶)14
 hwm←2000⌶14
 {}⍎expr
 hwm-⍨←2000⌶14
∇

Memory vs Time consumption
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 DefineVars

 What’s the size of each variable?
  {⍵,⍪SIZE ⍵}⎕THIS.⎕NL-2 

 What is the Data Representation of n. How can that 
help you deduce the size? 

Exercise: Lasagna Problem
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⎕profile ‘clear’

⎕profile ‘start’

 …

⎕profile ‘stop’

]profile

Profiling an Application
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Demo/Exercise
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 Allows the interpreter to apply a combination of 
primitives in a more performant way

Idiom Recognition
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 See Programming Reference Guide for 
full list

 Use syntax highlighting to help spot 

Idiom List

https://docs.dyalog.com/latest/Dyalog%20Programming%20Reference%20Guide.pdf#page=39
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 Use syntax highlighting 
to help identify 

Idiom List
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Idiom List

v ← ?1e6⍴100
      ]runtime -c "{⍺,≢⍵}⌸v" "{⍺,(≢⍵)}⌸v"

{⍺,≢⍵}⌸v   → 9.6E¯4 |    0% ⎕⎕⎕⎕⎕⎕⎕ 
{⍺,(≢⍵)}⌸v → 5.7E¯3 | +494% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕ 
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{⊂⍵}  {⍺⍵}   {⍺}   ⊣

{≢ ⍵}   {⍺(≢ ⍵)}   {⍺,≢ ⍵}
{≢∪⍵}   {⍺(≢∪⍵)}  {⍺,≢∪⍵}

{F/⍵} {⍺(F/⍵)} {⍺,F/⍵}
{F⌿⍵} {⍺(F⌿⍵)} {⍺,F⌿⍵}

 for Boolean Y if F is one of ∧∨=≠+
 for numeric Y if F is one of +⌈⌊

Set Phrases — key F⌸Y
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{⊂⍵}  {≢⍵}

{+/⍵} {⌈/⍵} {⌊/⍵}

{⍺,+/⍵} {⍺(f/⍵)}

Set Phrases — key F⌸
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{⊂⍵}  {≢⍵}

{+/⍵} {⌈/⍵} {⌊/⍵}

      ⎕RL←42 ⋄ key←(⎕A[?30⍴8]),⍪(?30⍴5) ⋄ (≢,≢∘∪)key

30 20

      ]runtime -c "{≢⍵}⌸key" "{≢⊢⍵}⌸key"

                                                                       

  {≢⍵}⌸key  → 1.2E¯6 |     0% ⎕                                        

  {≢⊢⍵}⌸key → 3.2E¯5 | +2626% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕

Set Phrases — key F⌸
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 In APL, each item of a nested array is a pointer to an array, 
and every array has a header and data. On a 64-bit system, 
a pointer takes 64 bits. 

 This can be a rather inefficient way to store data

Inverted Tables
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Pointer bloat in “verted” table
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# of bits per item

# of items

# of bytes for the items, rounded up     
to the next multiple of 8

# of bytes for the header

Size of a verted table
size←{24+(8×≢⍴⍵) + 8×⌈64÷⍨(×/⍴⍵)×⌊0.1×⎕dr ⍵}

⌊0.1×⎕dr ⍵  

×/⍴⍵         

8×⌈64÷⍨ 

       
24+(8×≢⍴⍵) 
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 In contrast, for an inverted table, each column is a simple 
array, so
 the number of pointers is the same as the number of columns

 the number of headers is the same as the number of columns, plus 1 
for the table itself.

Moreover, the data for each column are contiguous in memory, 
resulting in faster access.

Size of an “Inverted” table
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Exercise: Invert a regular table

 Load in the file as a regular table 
 ⎕CSV path ⍬ 4 

 Check the size of the table

 Transform the table to an inverted style

 What’s the size difference?
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 8⌶

Exercise: Try lookup of IVT vs VT 
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 Write a function that replaces infrequently occurring 
items with a shorter id
 (∪x)⍳x

Data table normalization
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 APL is implicitly a Parallel language

 Many of the primitives already automatically 
parallelized by the interpreter 

Parallelization: Automatic
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 Overhead in parallelization not worth it if your arrays 
are small
 Most APL arrays are small! 

 Parallel programming requires care – many applications 
depend on side effects and will have race conditions

Not as simple
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 & operator

 F & arg

 Not a real OS thread, the interpreter handles 
multitasking

 Useful for running a program in the background, 
without waiting (asynchronous) 

Green Threads
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 Immediately returns the TID 

 Look into ⎕TPUT/⎕TGET (tokens) for 
communicating between threads

 ⎕TSYNC for synchronization

&
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 How long do the following expressions take to return and run?

Quiz

• ⎕DL 1
• ⎕DL¨1 2 
• ⎕DL&¨ 1 2 
• ⎕TSYNC ⎕DL&¨1 2
• ⎕DL II¨ 1 2
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 Isolates are a form of explicit parallelization 
 The task is left to the programmer to decide when things ought 

to be run in parallel 

 Different from “Green Threads”(&)
 Actual OS processes used 

Isolates
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Isolates

X←1 2 3

X←4 5

X←6 7

I3←¤¨3⍴⊂''

I3.({+/⍵÷⍴⍵}X)
I3.X←(1 2 3)(4 5)(6 7)   

2 4.5 6.5

71
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The cosine similarity encodes correlation between two vectors

∘.CosineSimilarity⍨(0 0 1)(0 1 1)(1 0 0)
1            0.7071067812 0
0.7071067812 1            0
0            0            1

Exercise
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The cosine similarity encodes correlation between two vectors

 CosineSimilarity←{

    Abs←{0.5*⍨+/⍵*2}

    (⍺+.×⍵)÷⍺×⍥Abs ⍵

 }

Exercise
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 Run the cosine similarity using isolates, chunking the data 
into partitions first

Exercise
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 Is there a faster way to write the earlier function, without 
isolates? 

Exercise
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Example: Maximum Difference

 Given a list of numbers, compute the largest difference 
between any two numbers in the list.

{⌈/,∘.-⍨⍵}

{⍺←0 ⋄ 0∊⍴⍵:⍺ ⋄ (⍺⌈⌈/|⍵-⊃⍵)∇1↓⍵}

Overcomputing
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Overcomputing
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 Don’t get lost in micro-optimizations 

 Use judgement on code clarity vs performance

Practical notes
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