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What is tacit programming?

Explicit code mentions arguments:

e Expression ([/N)-L/N«3 1 4 1 5

e Tradfn V R<Range Y ..
e Dfn {([/w)-(L/w)}
Tacit code implies arguments:

e Tacit (r/-17/)
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You already know some

f/ f7 eo.g f\ Aeg fB f[B

Operators derive tacit functions
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Function composition

fog fog f~ fgh fog

Function composition is plumbing
that guides arguments to functions
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Benefits

Arguments in operands

Memorable (like zc+ and +#+#)
Adjacency (like x- and v/¢€)

Brevity (like Fo[JC)

DRY (Don’t Repeat Yourself; like =6p)

Just a general feeling of superiority and awesomeness
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Overview

Compositional operators (combinators)

Trains (forks and atops)

Tools
Issues Plenty of
Reading exercises

throughout
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o Qver

The shape of an outer product . °.f wis f
(pa) , (pw) / \
g g
We can write this as ‘ |
o ,0p w
0 W
“pre-process both” a fOg w
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o Beside

Location of ath 1 in each element of w is f
05" 1w \
o g
We can write this as ‘
o 201 W
x W
“pre-process right” a fog w
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o Atop

Any-presence of o in w is f
v/ o € w I
. g
We can write this as / \
o v/°€ w
x W
“post-process result” a 59 w
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~ Commute

A multiplication table of N is
(tw) o.x (ww)

We can write this as
°o.X~ 1W

“selfie”
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Tasks: Tacify!

1.

2.

3.

4.

'Hello' {(#a)=(Zw)} 'World'
‘ab' 'cd' 'ab' {+/aew} 'ab‘’
8 100 0 {o+lw} 2.5
10 4 1 0 {allw} 2.5

. {#\w=w} 2 7 1 8 3

Tacit Programming in Dyalog
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Train Introduction

Also a type of composition Most common mistake
Sequence of functions in isolation

¢ Parenthesised:

(+42#) 3 1 4 1 5 0.

¢ Assigned
Avg++f+¢ 2
Avg 3 1 4 1 5

2

.8

t#+# 3 1 4 15

(+4+#)3 1 4 1 5
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Discussion: Writing Trains

(fY)+(hYy) > (f+h)Y
(FY)+(C YY) > (f+r)Y

(XfY)+(XhY) > X(f+h)Y
(X )+ (XhY) > X(+4+h)Y
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Discussion: Writing Trains

(FY)g(hY) - (fgh)Y ;
(FY)g( Y) » (fgr)y 1:/\h

\/

(XfY)g(XhY) > X(fgh)Y
(fgh)w

(X )g(XhY) = X(4gh)Y

15 Tacit Programming in Dyalog
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Discussion: Writing Trains

(fY)g(hY) > (fgh)Y
(fY)g( Y) > (fgr)Yy
g(hY) > ( gh)Y

(XfY)g(XhY) - X(fgh)Y
(X )g(XhyY) - X(=2gh)yY
g(Xhy) > X( gh)Y
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Discussion: Writing Trains

(fY)g(hY) =~
(fY)g( Y) =~
f(gyY) =~

(XfY)g(Xhy) -
(X )g(Xhy) -
f(XgyY) -

17 Tacit Programming in Dyalog
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Train Details ( \

Some parts can be arrays:

e Aghis {A}gh w Aaw
Two sub-types of trains: (Agh)w a(Agh)w
e Fork: fgh and Agh

¢ Atop: fg ©
Longer trains: / \ \

¢ (defgh)is (de(fgh))

e (efgh)is (e(fgh) /\ /\
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Example: Writing a Train

{r/ ([\w) = w} 13567
1 {r/ (\w) = (rw)} 1 35 67
1 {ra/ ([N =+) w} 13567
1 {(A/ [\ =+) w} 13567
1 (An/ TN =+) 136567
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Tasks: Convert dfn to tacit

2.

{1+w} 2 7 1 8

31 4 {(avw)~(anw)} 1 6 1

. {vwviw} 10

2 {(a>Vw)ow} 2 7 1 8 3

{wx2} 2 7 1 8 3 Bonus:

Find 3 ways
to do this!

Tacit Programming in Dyalog
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Amazing tool: Jbox on
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]box on

| =+ /%=
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Jbox on -t=.. | et /%=

-t=box
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Jbox on -t=.. | et /%=

-t=box -t=tree
I_I_

]

s =+ %

x| = I_|_I

+/ /E

I_I

+

Tacit Programming in Dyalog
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Jbox on -t=.. | et /%=

-t=box ~t=tree -t=parens
—— | (F+((+/)%=))
]
N -+ %
x| = I_|_I
+ / / =
I_I
+
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Tasks: Convert dfn to tacit

1. {(ew)r(ew)} 1 1 1 01100 3

2. ', {(~wea)cw} 'ab,de;fgh'’ ab de fgh
nums<«<2 7 1 8 3

3. 4 {(a+#w)*a} nums 4.5 4.75

4. {(+#w)+Zw} nums . 2

5. Bonus task: Combine 3 & 4 into an ambivalent function.

Tacit Programming in Dyalog DYALOC
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Issues

Arguments in operands
Lots of monadic functions
Dotting, Assignment, Recursion

Selection

Tacit Programming in Dyalog
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Issues: Arguments in operands

10 {x«o ¢ ¢@{x<w}w} 1 2 13 14 5 16 7 18
1 2 18 16 5 14 7 13

10 { P@(a<+)w} 1 2 13 14 5 16 7 18
1 2 18 16 5 14 7 13

2 {(po@*xa)w} 3 3p19

w O O
N 01 00
o R

Tacit Programming in Dyalog DYALOC
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Issues: Lots of monadic functions

{o+£1¢ w}
o (+#)oto(¢7)
b(+£(197))
b+Foto(¢7)
G(+Fo107)

Tacit Programming in Dyalog
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Issues: Recursion, Assignment, Dotting

¢ Namespace “dotting”

¢ Assignment

® Recursion

{9#[DNC'w' :w ¢ n,;é"wg"n+wIDNL-2 9}

Tacit Programming in Dyalog
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Issues: Selection

{(3>w)#w} 3 1 4+ 15
4 5
(30>4F) 3 1 4 15
SYNTAX ERROR
(3054 ) 3 1 4 15
SYNTAX ERROR
(30> Fof +)3 1 4 1 5
4 5
30504 31 4 15

20.0 Conference Edition
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Issues: Selection

'aeiou
eoohll wrld
‘aeiou’
LENGTH ERROR

{wladw]} 'hello

{wl~0dw} 'hello

‘aeiou’ {w[l~cadAw} 'hello

eoohll wrld
'aeiou’

eoohll wrld
'aeiou’

(ceAllv) ‘'hello

(Ao+) 'hello

Tacit Programming in Dyalog
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Reading Tacit

operator scope
trains

putting it all together
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Reading Tacit: operator scope

:o¢30 13015

Tacit Programming in Dyalog

DYALOC




35

Reading Tacit: operator scope

:o¢30 1:°l5
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Reading Tacit: operator scope

=0$50 1015
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Reading Tacit: operator scope

:o¢30 13015
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Reading Tacit: operator scope

:o¢30 1~015
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Reading Tacit: operator scope

20450 1015
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Reading Tacit: operator scope

=°930 13015
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Reading Tacit: operator scope

20450 1015
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Reading Tacit: operator scope

=0$50 1%015
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Reading Tacit: operator scope

=050 12015
((((=o$)50 1)=)o1)5
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Reading Tacit: operator scope

=odo0 1~H15
((((=e¢)o0 1)~)°1)5
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Reading Tacit: operator scope

:o(|)°o°O 1Eo1_5
((((=e¢)o0 1)~)o1)5
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Reading Tacit: operator scope

=°¢EO 1~015
((((=0¢)°0 1)~)o1)5
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Reading Tacit: operator scope

=[50 1%015
((((=cd)s0 1)=)o1)5
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Writing Tacit: operator scope

1
1
1
1
1
1

{o[+/w} 3 1 74
o+/ 31 T4
[o+f] 3 1 74
([e+)/ 3 1 74
[o(+/) 3 1 T4
{al+/w} 3 1 74

Tacit Programming in Dyalog
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Tasks: Convert tacit to dfn

Monadic #o+~
Monadic 1o ,0c

Dyadic  te,0c

W o=

Dyadic +o0+%x=
Bonus tasks:

5. Combine 2. and 3. into a single ambivalent function
Hint: use the {a<«.. ¢ ...} syntax

Tacit Programming in Dyalog
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Reading Tacit: trains

(+,-) 4
b T

Tacit Programming in Dyalog
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Reading Tacit: trains

((+4),(-4%))
b T
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Reading Tacit: trains

(4,7 4)
b T
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Reading Tacit: trains

10 (+,-) 4
14 6
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Reading Tacit: trains

((10+4),(10-4))
14 6
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Reading Tacit: trains

(14,6)
14 6
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Reading Tacit: trains

(|+4£+1T#) 3 "1 "4 1 °5
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Reading Tacit: trains

(| +# +1 [ #) 371 74175
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Reading Tacit: trains

N N N N N

+ 4 + 1

(+/43 "1 "4+ 1 75) + 1

6 + 1
6 - 5

1.2

1.2

Tacit Programming in Dyalog
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Reading Tacit: trains

(| +#+ 1 [ #) 37174175
(] (+#43 71 "4 1 75) + 1 [ (#3 "1 "4 1 75))
(] 6 + 1 5)
(] 6 + 5)
(] 71.2)
1.2
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Reading Tacit: putting it all together

(co?=0#[J+) 'AEIOU'
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Reading Tacit: putting it all together

(co?<0# [] +) 'AEIOU'
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Reading Tacit: putting it all together

(co?=o# 0 +) 'AEIOU'
((co?2=0 'AEIOU') [] (+'AEIOU'))
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Reading Tacit: putting it all together

(co?=o# ] +) 'AEIOU'
((co?2=<0# '"AEIOU') [ (+'"AEIOU'"))
((co?2= 5 ) I 'AEIOU' )
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Reading Tacit: putting it all together

( co?~of ] +) 'AEIOU'
(( <co?2Z0f 'AEIOU') [ (+'"AEIOU'))
(( co?2= 5 ) 0 ‘'AEIOU' )
((5 €52 5) ] 'AEIOU' )
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Reading Tacit: putting it all together

( c o ?7~of ] +) 'AEIOU'
(( e o ?2<0# '"AEIOU') I (+'AEIOU'"))
(( e o ?2= 5 ) 0 'AEIOU' )
((5 ¢ s 2 5) ] 'AEIOU' )
(( €5 ?5) ] 'AEIOU' )
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Reading Tacit: putting it all together

(co?~0# [] +) 'AEIOU'
((co?2=0# 'AEIOU') [ (+"AEIOU'))
((ce?2= 5) [] "AEIOU")

((5 €52 5) ] '"AEIOU')
((c¢ 5 72 5) [] 'AEIOU"')

Tacit Programming in Dyalog
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Tasks: Convert tacit to dfn

Monadic xx| o |

Dyadic [ o#1t+

Dyadic =6([0C~o"' ')
Monadic +/F>+/+#
Bonus task:

5. Monadic ¢=++=¢

W o=

Tacit Programming in Dyalog
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Tasks: Determine valence

1+p1L 1o+
+/A\o=

| 711 11+\
1 1Qo.+

, O

/0,

Ok W hE

Tacit Programming in Dyalog
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Reading Tacit: tacit.help

Transform tacit APL into dfn form

f < | +FAsHoZ

fFYe {((+Aw)+(Zw)}

CIO

X fYye {(a(+A)w)+o}

Arrays: A4, B, C,... Functions: a, b, c,...
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Task: Working with tacit code

This dyadic function is like 1 but gives 0 for “not found”:
(1x¢3421)
Make it more efficient by:

¢ Breaking out 1 from the parenthesis
Hint: Pass all the data you need to the inner function

Then simplify it by:

¢ Using ° instead of o and adjusting the rest as necessary
70 Tacit Programming in Dyalog DYALOC
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Task: Working with tacit code

This function is applied to a non-empty numeric vector:
(+\e=o1+/)

Make it more efficient by:

¢ Breaking out +\ from the parenthesis

¢ Computing what would be +/ from +\
Hint: +/ is the last element of +\

Tacit Programming in Dyalog
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Function composition: Issues with tacit:

O  Pre-process both Arguments in operands
o  Pre-process right Lots of monadic functions
o Post-process Namespace “dotting”
~  Selfie Assignment
Operators: long left scope Recursion
Trains: odd-even from right  Selection:
Tools: lbox on -t-=.. o
tacit.help co. [ ..
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