DYALOC

Glasgow 2024

Tacit Programming in Dyalog

Adam Brudzewsky Rich Park

DYALOC

Glasgow 2024
Tacit Programming in Dyalog

Adam Brudzewsky

Rich Park

Stefan Kruger

DYALOC

Glasgow 2024
Tacit Programming in Dyalog

Adadm Brudzewsky - xpqz.github.io/cultivations/Trains

Stefan Kruger -+ xpgz.github.io/learnapl/tacit

What is tacit programming?

Explicit code mentions arguments:

e Expression ([/N)-L/N«3 1 4 1 5

e Tradfn V R<Range Y ..
e Dfn {([/w)-(L/w)}
Tacit code implies arguments:

e Tacit (r/-17/)

Tacit Programming in Dyalog DYALOC

You already know some

f/ f7 eo.g f\ Aeg fB f[B

Operators derive tacit functions

Tacit Programming in Dyalog DYALOC

Function composition

fog fog f~ fgh fog

Function composition is plumbing
that guides arguments to functions

Tacit Programming in Dyalog

DYALOC

Benefits

Arguments in operands

Memorable (like zc+ and +#+#)
Adjacency (like x- and v/¢€)

Brevity (like Fo[JC)

DRY (Don’t Repeat Yourself; like =6p)

Just a general feeling of superiority and awesomeness

Tacit Programming in Dyalog DYALOC

Overview

Compositional operators (combinators)

Trains (forks and atops)

Tools
Issues Plenty of
Reading exercises

throughout

Tacit Programming in Dyalog

DYALOC

o Qver

The shape of an outer product . °.f wis f
(pa) , (pw) / \
g g
We can write this as ‘ |
o ,0p w
0 W
“pre-process both” a fOg w

Tacit Programming in Dyalog DYALOC

o Beside

Location of ath 1 in each element of w is f
05" 1w \
o g
We can write this as ‘
o 201 W
x W
“pre-process right” a fog w

Tacit Programming in Dyalog DYALOC

o Atop

Any-presence of o in w is f
v/ o € w I
. g
We can write this as / \
o v/°€ w
x W
“post-process result” a 59 w

10 Tacit Programming in Dyalog DYALOC

11

~ Commute

A multiplication table of N is
(tw) o.x (ww)

We can write this as
°o.X~ 1W

“selfie”

Tacit Programming in Dyalog

DYALOC

12

Tasks: Tacify!

1.

2.

3.

4.

'Hello' {(#a)=(Zw)} 'World'
‘ab' 'cd' 'ab' {+/aew} 'ab‘’
8 100 0 {o+lw} 2.5
10 4 1 0 {allw} 2.5

. {#\w=w} 2 7 1 8 3

Tacit Programming in Dyalog

ldel

50 O

2 10

0101

DYALOC

13

Train Introduction

Also a type of composition Most common mistake
Sequence of functions in isolation

¢ Parenthesised:

(+42#) 3 1 4 1 5 0.

¢ Assigned
Avg++f+¢ 2
Avg 3 1 4 1 5

2

.8

t#+# 3 1 4 15

(+4+#)3 1 4 1 5

Tacit Programming in Dyalog

DYALOC

Discussion: Writing Trains

(fY)+(hYy) > (f+h)Y
(FY)+(C YY) > (f+r)Y

(XfY)+(XhY) > X(f+h)Y
(X)+ (XhY) > X(+4+h)Y

14 Tacit Programming in Dyalog

DYALOC

Discussion: Writing Trains

(FY)g(hY) - (fgh)Y ;
(FY)g(Y) » (fgr)y 1:/\h

\/

(XfY)g(XhY) > X(fgh)Y
(fgh)w

(X)g(XhY) = X(4gh)Y

15 Tacit Programming in Dyalog

g

f/ \h
]

a(fgh)w

DYALOC

Discussion: Writing Trains

(fY)g(hY) > (fgh)Y
(fY)g(Y) > (fgr)Yy
g(hY) > (gh)Y

(XfY)g(XhY) - X(fgh)Y
(X)g(XhyY) - X(=2gh)yY
g(Xhy) > X(gh)Y

16 Tacit Programming in Dyalog

DYALOC

Discussion: Writing Trains

(fY)g(hY) =~
(fY)g(Y) =~
f(gyY) =~

(XfY)g(Xhy) -
(X)g(Xhy) -
f(XgyY) -

17 Tacit Programming in Dyalog

(fgh)Y
(Fgr) Y f f
(fg)yY g !]
X(fgh)yY W a/\w
X(2gh)Y (fg)u a(fg)u
X(fg)y

DVALOC

Train Details (\

Some parts can be arrays:

e Aghis {A}gh w Aaw
Two sub-types of trains: (Agh)w a(Agh)w
e Fork: fgh and Agh

¢ Atop: fg ©
Longer trains: / \ \

¢ (defgh)is (de(fgh))

e (efgh)is (e(fgh) /\ /\

Tacit Programming in Dyalog DYALOC

19

Example: Writing a Train

{r/ ([\w) = w} 13567
1 {r/ (\w) = (rw)} 1 35 67
1 {ra/ ([N =+) w} 13567
1 {(A/ [\ =+) w} 13567
1 (An/ TN =+) 136567

Tacit Programming in Dyalog

DYALOC

20

Tasks: Convert dfn to tacit

2.

{1+w} 2 7 1 8

31 4 {(avw)~(anw)} 1 6 1

. {vwviw} 10

2 {(a>Vw)ow} 2 7 1 8 3

{wx2} 2 7 1 8 3 Bonus:

Find 3 ways
to do this!

Tacit Programming in Dyalog

"

8 2 9

L 6

2 5 10

49 1 64 9

DYALOC

21

Amazing tool: Jbox on

Tacit Programming in Dyalog

DYALOC

22

]box on

| =+ /%=

Tacit Programming in Dyalog

DYALOC

23

Jbox on -t=.. | et /%=

-t=box

Tacit Programming in Dyalog

DYALOC

24

Jbox on -t=.. | et /%=

-t=box -t=tree
I_I_

]

s =+ %

x| = I_|_I

+/ /E

I_I

+

Tacit Programming in Dyalog

DYALOC

Jbox on -t=.. | et /%=

-t=box ~t=tree -t=parens
—— | (F+((+/)%=))
]
N -+ %
x| = I_|_I
+ / / =
I_I
+

Tacit Programming in Dyalog DYALOC

26

Tasks: Convert dfn to tacit

1. {(ew)r(ew)} 1 1 1 01100 3

2. ', {(~wea)cw} 'ab,de;fgh'’ ab de fgh
nums<«<2 7 1 8 3

3. 4 {(a+#w)*a} nums 4.5 4.75

4. {(+#w)+Zw} nums . 2

5. Bonus task: Combine 3 & 4 into an ambivalent function.

Tacit Programming in Dyalog DYALOC

27

Issues

Arguments in operands
Lots of monadic functions
Dotting, Assignment, Recursion

Selection

Tacit Programming in Dyalog

DYALOC

28

Issues: Arguments in operands

10 {x«o ¢ ¢@{x<w}w} 1 2 13 14 5 16 7 18
1 2 18 16 5 14 7 13

10 { P@(a<+)w} 1 2 13 14 5 16 7 18
1 2 18 16 5 14 7 13

2 {(po@*xa)w} 3 3p19

w O O
N 01 00
o R

Tacit Programming in Dyalog DYALOC

29

Issues: Lots of monadic functions

{o+£1¢ w}
o (+#)oto(¢7)
b(+£(197))
b+Foto(¢7)
G(+Fo107)

Tacit Programming in Dyalog

DYALOC

30

Issues: Recursion, Assignment, Dotting

¢ Namespace “dotting”

¢ Assignment

® Recursion

{9#[DNC'w' :w ¢ n,;é"wg"n+wIDNL-2 9}

Tacit Programming in Dyalog

DYALOC

31

Issues: Selection

{(3>w)#w} 3 1 4+ 15
4 5
(30>4F) 3 1 4 15
SYNTAX ERROR
(3054) 3 1 4 15
SYNTAX ERROR
(30> Fof +)3 1 4 1 5
4 5
30504 31 4 15

20.0 Conference Edition

Tacit Programming in Dyalog DYALOC

32

Issues: Selection

'aeiou
eoohll wrld
‘aeiou’
LENGTH ERROR

{wladw]} 'hello

{wl~0dw} 'hello

‘aeiou’ {w[l~cadAw} 'hello

eoohll wrld
'aeiou’

eoohll wrld
'aeiou’

(ceAllv) ‘'hello

(Ao+) 'hello

Tacit Programming in Dyalog

world'

world'

world"'

world'

world'

DYALOC

33

Reading Tacit

operator scope
trains

putting it all together

Tacit Programming in Dyalog

DYALOC

34

Reading Tacit: operator scope

:o¢30 13015

Tacit Programming in Dyalog

DYALOC

35

Reading Tacit: operator scope

:o¢30 1:°l5

Tacit Programming in Dyalog

DYALOC

36

Reading Tacit: operator scope

=0$50 1015

Tacit Programming in Dyalog

DYALOC

37

Reading Tacit: operator scope

:o¢30 13015

Tacit Programming in Dyalog

DYALOC

38

Reading Tacit: operator scope

:o¢30 1~015

Tacit Programming in Dyalog

DYALOC

39

Reading Tacit: operator scope

20450 1015

Tacit Programming in Dyalog

DYALOC

40

Reading Tacit: operator scope

=°930 13015

Tacit Programming in Dyalog

DYALOC

41

Reading Tacit: operator scope

20450 1015

Tacit Programming in Dyalog

DYALOC

42

Reading Tacit: operator scope

=0$50 1%015

Tacit Programming in Dyalog

DYALOC

43

Reading Tacit: operator scope

=050 12015
((((=o$)50 1)=)o1)5

Tacit Programming in Dyalog

DYALOC

44

Reading Tacit: operator scope

=odo0 1~H15
((((=e¢)o0 1)~)°1)5

Tacit Programming in Dyalog

DYALOC

45

Reading Tacit: operator scope

:o(|)°o°O 1Eo1_5
((((=e¢)o0 1)~)o1)5

Tacit Programming in Dyalog

DYALOC

46

Reading Tacit: operator scope

=°¢EO 1~015
((((=0¢)°0 1)~)o1)5

Tacit Programming in Dyalog

DYALOC

a7

Reading Tacit: operator scope

=[50 1%015
((((=cd)s0 1)=)o1)5

Tacit Programming in Dyalog

DYALOC

48

Writing Tacit: operator scope

1
1
1
1
1
1

{o[+/w} 3 1 74
o+/ 31 T4
[o+f] 3 1 74
([e+)/ 3 1 74
[o(+/) 3 1 T4
{al+/w} 3 1 74

Tacit Programming in Dyalog

—_ = e e e

DYALOC

49

Tasks: Convert tacit to dfn

Monadic #o+~
Monadic 1o ,0c

Dyadic te,0c

W o=

Dyadic +o0+%x=
Bonus tasks:

5. Combine 2. and 3. into a single ambivalent function
Hint: use the {a<«.. ¢ ...} syntax

Tacit Programming in Dyalog

DYALOC

50

Reading Tacit: trains

(+,-) 4
b T

Tacit Programming in Dyalog

DYALOC

51

Reading Tacit: trains

((+4),(-4%))
b T

Tacit Programming in Dyalog

DYALOC

52

Reading Tacit: trains

(4,7 4)
b T

Tacit Programming in Dyalog

DYALOC

53

Reading Tacit: trains

10 (+,-) 4
14 6

Tacit Programming in Dyalog

DYALOC

54

Reading Tacit: trains

((10+4),(10-4))
14 6

Tacit Programming in Dyalog

DYALOC

55

Reading Tacit: trains

(14,6)
14 6

Tacit Programming in Dyalog

DYALOC

56

Reading Tacit: trains

(|+4£+1T#) 3 "1 "4 1 °5

Tacit Programming in Dyalog

DYALOC

57

Reading Tacit: trains

(| +# +1 [#) 371 74175

Tacit Programming in Dyalog

DYALOC

58

Reading Tacit: trains

N N N N N

+ 4 + 1

(+/43 "1 "4+ 1 75) + 1

6 + 1
6 - 5

1.2

1.2

Tacit Programming in Dyalog

Z) 3 71 41 75

T (#3 71 T4 1 T5))

5)
)
)

DYALOC

59

Reading Tacit: trains

(| +#+ 1 [#) 37174175
(] (+#43 71 "4 1 75) + 1 [(#3 "1 "4 1 75))
(] 6 + 1 5)
(] 6 + 5)
(] 71.2)
1.2

Tacit Programming in Dyalog DYALOC

60

Reading Tacit: putting it all together

(co?=0#[J+) 'AEIOU'

Tacit Programming in Dyalog

DYALOC

61

Reading Tacit: putting it all together

(co?<0# [] +) 'AEIOU'

Tacit Programming in Dyalog

DYALOC

62

Reading Tacit: putting it all together

(co?=o# 0 +) 'AEIOU'
((co?2=0 'AEIOU') [] (+'AEIOU'))

Tacit Programming in Dyalog

DYALOC

Reading Tacit: putting it all together

(co?=o#] +) 'AEIOU'
((co?2=<0# '"AEIOU') [(+'"AEIOU'"))
((co?2= 5) I 'AEIOU')

63 Tacit Programming in Dyalog DYALOC

Reading Tacit: putting it all together

(co?~of] +) 'AEIOU'
((<co?2Z0f 'AEIOU') [(+'"AEIOU'))
((co?2= 5) 0 ‘'AEIOU')
((5 €52 5)] 'AEIOU')

Tacit Programming in Dyalog DYALOC

Reading Tacit: putting it all together

(c o ?7~of] +) 'AEIOU'
((e o ?2<0# '"AEIOU') I (+'AEIOU'"))
((e o ?2= 5) 0 'AEIOU')
((5 ¢ s 2 5)] 'AEIOU')
((€5 ?5)] 'AEIOU')

Tacit Programming in Dyalog DYALOC

66

Reading Tacit: putting it all together

(co?~0# [] +) 'AEIOU'
((co?2=0# 'AEIOU') [(+"AEIOU'))
((ce?2= 5) [] "AEIOU")

((5 €52 5)] '"AEIOU')
((c¢ 5 72 5) [] 'AEIOU"')

Tacit Programming in Dyalog

DYALOC

67

Tasks: Convert tacit to dfn

Monadic xx| o |

Dyadic [o#1t+

Dyadic =6([0C~o"' ')
Monadic +/F>+/+#
Bonus task:

5. Monadic ¢=++=¢

W o=

Tacit Programming in Dyalog

DYALOC

68

Tasks: Determine valence

1+p1L 1o+
+/A\o=

| 711 11+\
1 1Qo.+

, O

/0,

Ok W hE

Tacit Programming in Dyalog

DYALOC

Reading Tacit: tacit.help

Transform tacit APL into dfn form

f < | +FAsHoZ

fFYe {((+Aw)+(Zw)}

CIO

X fYye {(a(+A)w)+o}

Arrays: A4, B, C,... Functions: a, b, c,...

69 Tacit Programming in Dyalog DYALOC

Task: Working with tacit code

This dyadic function is like 1 but gives 0 for “not found”:
(1x¢3421)
Make it more efficient by:

¢ Breaking out 1 from the parenthesis
Hint: Pass all the data you need to the inner function

Then simplify it by:

¢ Using ° instead of o and adjusting the rest as necessary
70 Tacit Programming in Dyalog DYALOC

71

Task: Working with tacit code

This function is applied to a non-empty numeric vector:
(+\e=o1+/)

Make it more efficient by:

¢ Breaking out +\ from the parenthesis

¢ Computing what would be +/ from +\
Hint: +/ is the last element of +\

Tacit Programming in Dyalog

DYALOC

Function composition: Issues with tacit:

O Pre-process both Arguments in operands
o Pre-process right Lots of monadic functions
o Post-process Namespace “dotting”
~ Selfie Assignment
Operators: long left scope Recursion
Trains: odd-even from right Selection:
Tools: lbox on -t-=.. o
tacit.help co. [..

72 Tacit Programming in Dyalog DYALOC

	Slide 0: Tacit Programming in Dyalog
	Slide 1: Tacit Programming in Dyalog
	Slide 2: Tacit Programming in Dyalog
	Slide 3: What is tacit programming?
	Slide 4: You already know some
	Slide 5: Function composition
	Slide 6: Benefits
	Slide 7: Overview
	Slide 8: ⍥ Over
	Slide 9: ∘ Beside
	Slide 10: ⍤ Atop
	Slide 11: ⍨ Commute
	Slide 12: Tasks: Tacify!
	Slide 13: Train Introduction
	Slide 14: Discussion: Writing Trains
	Slide 15: Discussion: Writing Trains
	Slide 16: Discussion: Writing Trains
	Slide 17: Discussion: Writing Trains
	Slide 18: Train Details
	Slide 19: Example: Writing a Train
	Slide 20: Tasks: Convert dfn to tacit
	Slide 21: Amazing tool:]box on
	Slide 22:]box on |⊢÷+/⍣≡
	Slide 23:]box on –t=… |⊢÷+/⍣≡
	Slide 24:]box on –t=… |⊢÷+/⍣≡
	Slide 25:]box on –t=… |⊢÷+/⍣≡
	Slide 26: Tasks: Convert dfn to tacit
	Slide 27: Issues
	Slide 28: Issues: Arguments in operands
	Slide 29: Issues: Lots of monadic functions
	Slide 30: Issues: Recursion, Assignment, Dotting
	Slide 31: Issues: Selection
	Slide 32: Issues: Selection
	Slide 33: Reading Tacit
	Slide 34: Reading Tacit: operator scope
	Slide 35: Reading Tacit: operator scope
	Slide 36: Reading Tacit: operator scope
	Slide 37: Reading Tacit: operator scope
	Slide 38: Reading Tacit: operator scope
	Slide 39: Reading Tacit: operator scope
	Slide 40: Reading Tacit: operator scope
	Slide 41: Reading Tacit: operator scope
	Slide 42: Reading Tacit: operator scope
	Slide 43: Reading Tacit: operator scope
	Slide 44: Reading Tacit: operator scope
	Slide 45: Reading Tacit: operator scope
	Slide 46: Reading Tacit: operator scope
	Slide 47: Reading Tacit: operator scope
	Slide 48: Writing Tacit: operator scope
	Slide 49: Tasks: Convert tacit to dfn
	Slide 50: Reading Tacit: trains
	Slide 51: Reading Tacit: trains
	Slide 52: Reading Tacit: trains
	Slide 53: Reading Tacit: trains
	Slide 54: Reading Tacit: trains
	Slide 55: Reading Tacit: trains
	Slide 56: Reading Tacit: trains
	Slide 57: Reading Tacit: trains
	Slide 58: Reading Tacit: trains
	Slide 59: Reading Tacit: trains
	Slide 60: Reading Tacit: putting it all together
	Slide 61: Reading Tacit: putting it all together
	Slide 62: Reading Tacit: putting it all together
	Slide 63: Reading Tacit: putting it all together
	Slide 64: Reading Tacit: putting it all together
	Slide 65: Reading Tacit: putting it all together
	Slide 66: Reading Tacit: putting it all together
	Slide 67: Tasks: Convert tacit to dfn
	Slide 68: Tasks: Determine valence
	Slide 69: Reading Tacit: tacit.help
	Slide 70: Task: Working with tacit code
	Slide 71: Task: Working with tacit code
	Slide 72

