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Copy the folder 2024-TP3 from the USB drive
 One workspace (stats.dws)
 One Cider project (ReadMail folder)
 One Powerpoint presentation
 One zip file containing Link 4.0.20
If you cannot use USB, unzip the latest release from
 https://github.com/dyalog-training/2024-

TP3/releases/tag/v1.0.0
 NB: Exercises assume Link v4.0.20 or later

Materials

https://github.com/dyalog-training/2024-TP3/releases/tag/v1.0.0
https://github.com/dyalog-training/2024-TP3/releases/tag/v1.0.0


TP3 – Link & Text Source Basics2

 Give an introduction to Link

 Give you time to experiment with Link

 Focus on the process of moving source 
from a workspace to text files
 And rebuilding the runtime environment

 If we have time: Using Cider to manage 
Tatin and NuGet Packages

Goals
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What exactly is Link?

 Each code item in the active workspace is linked to a file
 Functions, Operators, Classes and "Scripted" Namespaces – and optionally variables
 "Unscripted" Namespaces (namespaces with no source text) map to directories

 If the item is edited using the APL editor, the file is updated
 If the file is changed, the workspace is updated
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 Link replaces SALT
 (SALT will be available until no longer used)

 Eventually, I hope that most of Link will also disappear 
and be replaced by functionality in the interpreter

 With Link…
 The interpreter is tracking the relationships 

between objects and files

 A File System Watcher responds to external changes 
(requires .NET, supported under Windows, Mac & Linux)

”Old Timers”: Link replaces SALT
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 Runs a callback function in APL each time a file changes in a linked 
folder

 Designed to capture changes made in an external editor
 Should be able to handle ”small” git actions

 Code still being improved

 Not appropriate for handling "bulk" changes, such as
 Unzipping lots of files into a watched folder
 Doing a large checkout/revert
 Network drives

 Requires .NET - not available under AIX

About the File System Watcher
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 With source code in text files we can use 
extremely attractive tools developed 
outside the APL community
 Tools for editing, comparing, mergeing, 

refactoring, sharing, building, testing, 
computing statistics, …

 … in addition to all our own tools

 … without losing any of what is good about 
interactive development

Why is Link                              ?IMPORTANT
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Why is Link                              ?IMPORTANT
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 Showing VS Code with Git History and a 
diff

Screen Shot from Mortens SA1 
Slides
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 Easily share code between APL versions
 Text files are backwards and forwards compatible

 Laugh at syserrors

Drawbacks of Text Source
 This space intentionally left blank

Other Benefits of Text Source
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 Link 4.0 was shipped with 19.0
 Also works with 18.2

 Link 3.0 was shipped with 18.2 and works with 18.0

 Link 2.0 for 18.0 and 17.1

 Rapidly growing user base
 Decent documentation
 ”Mature”

Link in 2024 – Version 4.0
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 https://github.com/dyalog/link

Link is a GitHub Project

https://github.com/dyalog/link
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 https://github.com/dyalog/link
 You *can* install Link yourself

 This was important up to 3.0, when there were regular 
significant fixes

 Still relevant if you want Link 4.0 with Dyalog 18.2

 The day after writing the above, I found a couple of bugs 
related to configuration files, so still relevant 

 We will install Link 4.0.20

Link is a GitHub Project

https://github.com/dyalog/link
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Verify Link Version

 Start APL, and inspect:

 If you do not have version 4.0.20, follow the instructions at 

https://dyalog.github.io/link/4.0/Usage/Installation/

⎕SE.Link.Version
4.0.20 

https://dyalog.github.io/link/4.0/Usage/Installation/
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 To start a new project
)ns myns
]link.create myns /my/dir

 At least one of myns or /my/dir must exist

 Only one of myns or /my/dir may be populated

Starting a New Project
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 Read the general guidelines on the use of Link API Functions and 
User Commands at https://dyalog.github.io/link/4.0/API/

 Create an empty namespace
 Create a link to a directory which does

not already exist
 )ED a function in the namespace
 Verify that a source file is created in the directory
 Edit the file using notepad or another external editor
 Verify that the function is updated in the WS
 )CLEAR, and re-create the link
 Verify that your code is loaded

Exercise 1

https://dyalog.github.io/link/4.0/API/
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Variables
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Variables
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 Create a variable containing a constant
that your application needs

 Cause it to be written to a file using
]Link.Add

 Inspect the file, edit it, and verify that
the new value appears in the workspace

 Can you write system variables to file?

Exercise 2
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Converting an Existing
Workspace
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Converting an Existing
Workspace
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Changes made to 
source files will 
always be actioned 

*IF* you are using 
the file system 
watcher

 Link updates source files when you "fix" in the Editor
 Link will NOT react to changes to source made via 

other mechanisms, e.g.
 life←42 ⋄ dup←{⍵⍵}

 )copy dfns cmpx

 ⎕FX 'r←dup x' 'r←x x'

 You can (must) use ]link.add to notify Link that 
source files should be updated

 When writing tools that modify source code, use 
⎕SE.Link.Fix in place of ⎕FX.

]Link.Add
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 Each function, operator or array is linked to a file
 ”Scripted” namespaces and classes also link to one file per 

object

 Each ”Unscripted” (aka ”Regular”) namespace links 
to a directory

 If an exported namespace contains sub-namespaces
 Each one becomes a sub-directory

 If an imported directory contains subdirectories
 Each one becomes a namespace

Namespace ←→ Folder
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 Create a subdirectory in your source

 Verify that a corresponding namespace is 
created in the workspace

 )ED a function in the namespace

 Rename the subdirectory

 Verify the effect in the workspace

Exercise 2.5
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caseCode
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 Export the workspace stats.dws

 Note that
 It contains two variables

 Has a non-default ⎕ML

 Has two names which differ only in case

Exercise 3
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 Use -caseCode or rename?

 Which variables should be considered 
"source”?

 ⎕ML=3:
 –sysvars

 ]link.add ⎕ML

 Rewrite?

Exercise 3 - Discussion
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Exercise 3 – Morten's Solution
)load c:\devt\2024-TP3\stats

c:\devt\2024-SA3\stats.dws ⍝ saved Tue Oct 4 22:59:08 2022
)fns

ComputeStats InitCache MEAN Main Mean Root Run StdDev 
)ed MEAN ⍝ rename to OLDMEAN
)erase MEAN
)vars

RESULTS STATFNS 
⊃RESULTS

1 2 3                   1 2 3 4                2 4 3 1               
Mean    2               Mean    2.5            Mean    2.5          
StdDev  0.8164965809    StdDev  1.118033989    StdDev  1.118033989  

STATFNS
Mean  StdDev 

]link.export # c:\tmp\stats
Exported: # → c:\tmp\stats

]link.export ⎕ML c:\tmp\stats
Exported: #.⎕ML → c:/tmp/stats/⎕ML.apla 

]link.export STATFNS c:\tmp\stats
Exported: #.STATFNS → c:/tmp/stats/STATFNS.apla 
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Exercise 3 – Morten's Solution
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 Some objects that CAN be saved in a Dyalog workspace
have no meaningful textual representation
 GUI & COM objects

 Saving such "binary" objects is a bad idea
 They cannot be transferred between 32/64 or classic/unicode

 You must write code which creates these objects at run or 
build time

Non-Representable Objects
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Example of explict creation of an otherwise un-saveable object:

∇ R←MakeOLEServer;ns;spec
[1]   ⍝ Recreate the OLE Server before WS is built
[2]    ns←#.StatsServer
[3]    ns.⎕WC'OleServer'('ClassID' '{395E64DF-6B44-4515-B409-6A0A2E1ACD9B}')

('RunMode' 'SingleUse')
[4]    spec←⊂'This function returns the mean' 'VT_VARIANT'                                         
[5]    spec,←⊂'InputNumbers' 'VT_VARIANT'                                                          
[6]    ns.SetFnInfo'Mean'spec
[7]    R←0                                                                                         

∇ 

Create an OLE Server…
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 Even if your "legacy" workspace is "flat"…
 It may contain modules that can benefit 

from being organised into separate 
directories

 The -flatten allows you to load code 
organised into directories into a flat 
workspace

 If you edit a function, the editor and Link 
know from whence it came

The –flatten switch
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 Move the source files for the statistical
functions (Mean, StdDev, Root) to a sub-
directory called "statfns"

 Get the application to run again

Exercise 4
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 -flatten or refactor?

Exercise 4 - Discussion
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 Configuration files (user or folder specific)
 Also used to record Stop and Trace settings

 Default to current namespace as source or target 
(Create, Import, Export)

 Search Installed Library folders
 Multi-Line Character Data
 Transfer file timestamps to workspace
 Create Link from single Class or NS

Highlights of Link 4.0
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Configuration Files
]link.configure # watch:dir  

Was  watch: 
      ]link.stop dup 1
Was dup ⍬

]link.configure c:\tmp\dup
Contents of "c:\tmp\dup/.linkconfig":
   Settings  :  watch:dir 
   Stop/Trace:
      dup[1/]

]link.configure *
No configuration options set in "C:\Users\mkrom\Documents\.linkconfig"

* = User

ns or dir



TP3 – Link & Text Source Basics52

 Import, Export and Create default to 
current namespace if given a single 
argument

 In Link 3.0, you always had to write

Default to Current NS
)cs dup

      ]link.export c:\exports\dup

]link.export dup c:\exports\dup
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Search Library Folders
]link.import HttpCommand

Imported: #.HttpCommand ← C:\Program Files\Dyalog\
    Dyalog APL-64 20.0 Unicode\Library\Conga\HttpCommand.dyalog

Also: Linking single source file
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Plain Text Formats

cols←'red' 'blue' 'green'
      ]link.add cols
Added: #.cols

 Array Notation is not the best
way to represent matrices or
vectors or character vectors:
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Plain Text Formats
]link.configure # text:plain

Was  text:
      cols←'red' 'blue' 'green'
      ]link.add cols
Added: #.cols
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Plain Text Formats
 Penultimate segment of name decides target representation

 This feature is still considered experimental
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File TimeStamps

]link.create # c:\tmp\dup
      mod←(2÷24)+21 ⎕ATX fns←'dup' 'trip'
      fns,⍪'DD-MM-YYYY hh:mm' (1200⌶) mod
 dup   05-09-2024 20:19 
 trip  05-09-2024 23:27 

 Link.Create sets ”AT” information 
using file timesamps
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 Set the configuration for your project to use 
text:plain

 )CLEAR and re-create the Link
 Notice that statfns.apla still exists and has 

been loaded
 The setting only affects how NEW files are created

 Create a new variable which is plain text – either 
a matrix or a vector of vectors

 Use ]link.add to save it and inspect the file

Exercise 5 – text:plain
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 If you need to take a break...

 Or a batch job crashes and saves a 
workspace

 You can )SAVE with active links
 (Since Link 3.0)

 ... and pick up where you left off ...

Saved Workspaces with Links
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Saved Links
Create a Source Folder & Do some work

⎕MKDIR 'c:\tmp\dup'   
(⊂'r←dup x' 'r←x x') ⎕NPUT 'c:\tmp\dup\dup.aplf'

]link.create # c:\tmp\dup
Linked: # ←→ c:\tmp\dup

)save c:\tmp\dup
c:\tmp\dup.dws ⍝ saved Thu Sep  5 20:19:10 2024

)off ⍝ Go to Lunch

Someone Edited the File While we were at Lunch
(⊂'r←dup x' 'r←x x ⍝ duplicate x') ⎕NPUT 'c:\tmp\dup\dup.aplf' 1

We return  from Lunch

)load c:\tmp\dup
c:\tmp\dup.dws ⍝ saved Thu Sep  5 20:19:10 2024
Link Warning: IMPORTANT: 1 namespaces linked in this workspace: #
Link Warning: IMPORTANT: Link.Resync is required
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Saved Links
”Resync is Required”

]link.resync

1 update required: use -proceed option to synchronise                                    

Name   Direction  File                 Comments                                         

#.dup  ←          c:/tmp/dup/dup.aplf  File is dated Now, WS copy is dated 1 minute ago 

Instead, we mess things up a bit more...

)copy dfns cmpx

]link.resync

2 updates required: use -proceed option to synchronise                                    

Name    Direction  File                 Comments                                         

#.cmpx  →                               Item has no corresponding file                   

#.dup   ←          c:/tmp/dup/dup.aplf  File is dated Now, WS copy is dated 1 minute ago 

Finally, clean up:

]link.resync –proceed

1 file read, 1 file updated
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 )SAVE your workspace

 )CLEAR or )OFF

 Edit and change one of the source files 
using notepad or similar

 )LOAD the workspace and sort things out

Exercise 6 – )SAVE with Links
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 Windows only, v18.2 or later: 
Right click in the file explorer
 "Load with Dyalog" will do a Link.Create on 

a selected folder, or import a selected file

 "Run with Dyalog" will look for a function 
called Run and invoke it if it exists after the 
link has been created.

 ]FileAssociations can be used 
to select the default APL version

Launch from Source
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 Point to a file, or a directory
 Can be specified on the command line, or in a .dcfg

file
 Add  LX='' to disable startup (just setting LOAD is 

actually equivalent to "Run with Dyalog")

LOAD= Parameter

{ 

  Settings: {

       AutoPW: 1, 

       MaxWS: "512M",        

       LOAD: "C:/Git/stats"

       }

}

Example .dcfg file
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 It is fine (even encouraged!) to dynamically load 
text source during development

 It is NOT recommended to dynamically load source 
from large numbers of text files in production 
environments

 Break links (or use Import rather than Create) 
and )SAVE to build workspace for production use

Boot or Build?
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 Write a "Build" function

Exercise 7
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First There Was The Workspace

APL
Workspace
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Then There was Link

Source Code
in Text Files

APL
Workspace

Link
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Then There was Link (and git/svn etc)

Source Code
in Text Files

APL
Workspace

Link

Source
HistorySource

HistorySource
History
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 We have our own code under control

 The next step is to add tools to manage 
”other people’s code”
 A PACKAGE manager

 To integrate the packages into our 
application, we need
 A PROJECT manager

Packages
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So… What is a Package?

(From Longman Dictionary of Contemporary English)
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A Project is…
Source Code +
 Dependencies (packages) 

loaded from a package
manager

 Environment configuration
 Development tools and 

processes
 Can be opened and "set up" by 

a Project Manager
 We will use ”Cider”

A Package is…
A "build" of a project...
 In a standard format
 Can be found, downloaded 

and installed by a
"Package Manager"

 Cider supports the 
development of Tatin 
Packages

 Cider can load Tatin + NuGet 
Packages
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 Load other code that we depend on
 Run some code on opening the project
 Run a build function
 Decide where to load the code
 Run tests 
 Set Link options to be used when loading the 

source code
 Set ⎕IO, ⎕ML

Introducing Cider
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]cider.createproject /tmp/tp3cp

When done, you should have:

)obs
tp3cp 

So now you can

)ed tp3cp.Foo

Creating a Project
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A Cider Project Folder
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 If you have not already done it, activate Cider and Tatin
 ]Tools.Activate all
 restart APL
 ]UReset
 ]Cider.Version

 Create a Cider project
 ]Cider.CreateProject /folder/name
 Inspect the contents of the folder
 Create a function in the project namespace

 )CLEAR and ]Cider.OpenProject

Exercise 8
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Tatin
Package manager for Dyalog APL
A tasty way to package APLs
48 Packages

NuGet
Package manager for .NET
Related to "Chocolatey"
361,905 416,844 Packages

]z←tatin.listPackages
      {⍺,≢⍵}⌸{(¯1+⍵⍳'-')↑⍵}¨3↓z[;1]
 aplteam  42
 davin     4
 dyalog    2

¯2↑z
 dyalog-HttpCommand  1
 dyalog-Jarvis       1

]z←tatin.listPackages
      {⍺,≢⍵}⌸{(¯1+⍵⍳'-')↑⍵}¨3↓z[;1]
aplteam  44
davin     4
dyalog    5 ⍝ 150% growth!

¯5↑z
 dyalog-APLProcess   1
 dyalog-HttpCommand  1
 dyalog-Jarvis       1
 dyalog-NuGet        1
 dyalog-OpenAI       1

2023 2024
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Finding Packages – www.tatin.dev
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Finding Packages
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Finding Packages

53 packages is enough to (sometimes) make it difficult
to decide which one to use
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]tatin.listtags
 tags from https://tatin.dev 
 --------------------------
 apl-git-interface               
 build                           
 calculations                    
 chm                             
 code-browsing                   
 code-coverage                   
 code-reviews                    
 command-generation              
 communication-tools             
 comparison-tool                 
 comparison-utilities            
 components                      
 config-files                    
 converter                       
 copy                            
 cryptography                    
 date                            
 dates 
 …
 …
 utilities                       
 validation                      
 webservice                      
 windows-event-log               
 windows-registry                
 winscp-interface                
 write                           
 yes-or-no                       
 zip-tools 

]Tatin.ListPackages -group=dyalog
Registry: https://tatin.dev                   
Group & Name # major versions 
------------ ----------------
dyalogAPLProcess                            1 
dyalog-HttpCommand                          1 
dyalog-Jarvis                               1 
dyalog-NuGet                                1 
dyalog-OpenAI                               1 

]Tatin.ListPackages -tag=crypto
Registry: https://tatin.dev                   
Group & Name # major versions 
------------ ----------------
aplteam-HashPasswords 1 

]Tatin.ListPackages
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 Example: I use HttpCommand in just about every new project
 To add it to our Cider project:

]Cider.AddTatinDependencies HttpCommand
1 Tatin dependency added: 
dyalog-HttpCommand-5.2.0 

 Since we did not specify a version, we get the latest.
 A reference is created to the loaded package within our project space:

tp3cp.HttpCommand.Get 'www.dyalog.com'
[rc: 0 | msg:  | HTTP Status: 200 "OK" | ≢Data: 22580]

Adding a Tatin Dependency
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 Add HttpCommand (or some other Tatin Package) to 
your project

 Inspect your project folder

 Close and reopen the project to convince yourself that 
it all works

 Update your function to use your new package

Exercise 9
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 NuGet is the .NET 
package manager

 You can use NuGet packages
from Dyalog APL, 
with .NET 6.0 or later

NuGet
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NuGet support 
currently requires .NET 
6.0, 7.0 or 8.0

Support for 
"Framework" packages
MAY follow

 You must have .NET 6.0 or later, and 
Dyalog APL configured to use it
(DYALOG_NETCORE=1).

⎕USING←''

System.Environment.Version

8.0.8

Adding a NuGet Package
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NuGet Tests
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 We can add Clock to our Cider project (by default, adds the latest version):

]Cider.AddNuGetDependencies Clock

Clock 1.0.3

 A reference to a namespace hosting the .NET package is created:

tp3cp.Clock.UtcNow.(Hour Minute) 

14 43

 In fact, the namespace is empty except for ⎕USING:

tp3cp.Clock.⎕USING

,c:/tmp/tp3cp/nuget-packages/published/Clock.dll 

Adding a NuGet Package
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 Add Clock (or another NuGet package
of your choice) to your project

 Possible inspiration at

https://github.com/Dyalog/nuget/tree/main/APLSource/Tests

Exercise 10
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 We can add Clock to our Cider project (by default, adds the latest version). 

 But more interesting:

]cider.addNuGetDependencies MailKit,MimeKit

Would you like to (re-)load all NuGet dependencies? (Y/n)  y

MailKit  MimeKit

 See the "ReadMail" Cider project in the TP3 folder:
]cider.openProject c:\devt\2024-TP3\ReadMail

Morten’s Solution
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We asked for these – what are the others?
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Dependencies of Dependencies
Great fleas have little fleas upon their backs to bite 'em,

And little fleas have lesser fleas, and so ad infinitum.

Augustus de Morgan

Both Tatin and NuGet will
automatically load such
dependencies

https://en.wikipedia.org/wiki/Ad_infinitum
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"Principal" dependencies (that we added)
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"Lesser" fleas
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"Principal" dependencies (that we added)
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]Cider.OpenProject C:\tmp\fleatest
Project successfully loaded and established in "#.fleatest"

)cs fleatest
#.fleatest

⎕NL -9
CiderConfig CompareFiles ZipArchive

CompareFiles
#._tatin.aplteam_CompareFiles_4_0_1.API

⍪#._tatin.⎕nl -9
aplteam_APLTreeUtils2_1_2_0 
aplteam_CommTools_1_5_0     
aplteam_CompareFiles_4_0_1  
aplteam_DotNetZip_2_0_2     
aplteam_FilesAndDirs_5_5_0  
aplteam_OS_3_0_1            
aplteam_ZipArchive_0_1_1 

#._tatin.aplteam_CompareFiles_4_0_1.⎕NL -9
API  APLTreeUtils2  Admin CommTools ComparisonTools FilesAndDirs TatinVars

Where Do Dependencies Go?

Our Dependencies

Lesser Fleas
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 Under Windows, Linux and macOS, .NET provides a "dotnet" 
command which:
 Creates .NET projects that we use to define and manage dependencies

(complete with a C# class that we never use)
 Adds Dependencies
 "Publishes" collections of DLLs that implement packages

 Dyalog's NuGet support depends heavily on this
 We just set ⎕USING to point to the published DLLs
 The alternative is to try to replicate poorly documented .NET behaviours

dotnet command-line tool
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 NuGet DLL's go in a folder called "published"

NuGet Packages – Under the Covers
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 The dotnet command line tool has created some C# 
code which "pretends" to use the NuGet packages

NuGet Packages – Under the Covers
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 The dotnet command line tool has created some C# 
code which "pretends" to use the NuGet packages

NuGet Packages – Under the Covers
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Same Same but Different
Tatin NuGet

#.projectSpace.HttpCommand #.projectSpace.Clock
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The Cast, in order of appearance

Tatin is the APL Package Manager
A Package is a project wrapped up for consumption by others

Link Synchronises Source Files and Workspace
The workspace and source files are "Linked"

NuGet is the .NET Package Manager
The Dyalog.NET Bridge allows APL to use .NET libraries

Cider is a Project Manager
A Project is a linked source folder, 
a config file, plus optional dependencies
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