
Glasgow 2024

Adám Brudzewsky

Link and the Basics of

APL Source in Text Files

Morten Kromberg

TP3 – Link & Text Source Basics1

Copy the folder 2024-TP3 from the USB drive
 One workspace (stats.dws)
 One Cider project (ReadMail folder)
 One Powerpoint presentation
 One zip file containing Link 4.0.20
If you cannot use USB, unzip the latest release from
 https://github.com/dyalog-training/2024-

TP3/releases/tag/v1.0.0
 NB: Exercises assume Link v4.0.20 or later

Materials

https://github.com/dyalog-training/2024-TP3/releases/tag/v1.0.0
https://github.com/dyalog-training/2024-TP3/releases/tag/v1.0.0

TP3 – Link & Text Source Basics2

 Give an introduction to Link

 Give you time to experiment with Link

 Focus on the process of moving source
from a workspace to text files
 And rebuilding the runtime environment

 If we have time: Using Cider to manage
Tatin and NuGet Packages

Goals

TP3 – Link & Text Source Basics3

TP3 – Link & Text Source Basics4

What exactly is Link?

 Each code item in the active workspace is linked to a file
 Functions, Operators, Classes and "Scripted" Namespaces – and optionally variables
 "Unscripted" Namespaces (namespaces with no source text) map to directories

 If the item is edited using the APL editor, the file is updated
 If the file is changed, the workspace is updated

TP3 – Link & Text Source Basics5

 Link replaces SALT
 (SALT will be available until no longer used)

 Eventually, I hope that most of Link will also disappear
and be replaced by functionality in the interpreter

 With Link…
 The interpreter is tracking the relationships

between objects and files

 A File System Watcher responds to external changes
(requires .NET, supported under Windows, Mac & Linux)

”Old Timers”: Link replaces SALT

TP3 – Link & Text Source Basics6

 Runs a callback function in APL each time a file changes in a linked
folder

 Designed to capture changes made in an external editor
 Should be able to handle ”small” git actions

 Code still being improved

 Not appropriate for handling "bulk" changes, such as
 Unzipping lots of files into a watched folder
 Doing a large checkout/revert
 Network drives

 Requires .NET - not available under AIX

About the File System Watcher

TP3 – Link & Text Source Basics7

 With source code in text files we can use
extremely attractive tools developed
outside the APL community
 Tools for editing, comparing, mergeing,

refactoring, sharing, building, testing,
computing statistics, …

 … in addition to all our own tools

 … without losing any of what is good about
interactive development

Why is Link ?IMPORTANT

TP3 – Link & Text Source Basics8

Why is Link ?IMPORTANT

TP3 – Link & Text Source Basics9

 Showing VS Code with Git History and a
diff

Screen Shot from Mortens SA1
Slides

TP3 – Link & Text Source Basics10

TP3 – Link & Text Source Basics11

 Easily share code between APL versions
 Text files are backwards and forwards compatible

 Laugh at syserrors

Drawbacks of Text Source
 This space intentionally left blank

Other Benefits of Text Source

TP3 – Link & Text Source Basics12

 Link 4.0 was shipped with 19.0
 Also works with 18.2

 Link 3.0 was shipped with 18.2 and works with 18.0

 Link 2.0 for 18.0 and 17.1

 Rapidly growing user base
 Decent documentation
 ”Mature”

Link in 2024 – Version 4.0

TP3 – Link & Text Source Basics13

 https://github.com/dyalog/link

Link is a GitHub Project

https://github.com/dyalog/link

TP3 – Link & Text Source Basics14

TP3 – Link & Text Source Basics15

TP3 – Link & Text Source Basics16

TP3 – Link & Text Source Basics17

 https://github.com/dyalog/link
 You *can* install Link yourself

 This was important up to 3.0, when there were regular
significant fixes

 Still relevant if you want Link 4.0 with Dyalog 18.2

 The day after writing the above, I found a couple of bugs
related to configuration files, so still relevant

 We will install Link 4.0.20

Link is a GitHub Project

https://github.com/dyalog/link

TP3 – Link & Text Source Basics18

TP3 – Link & Text Source Basics19

TP3 – Link & Text Source Basics20

Verify Link Version

 Start APL, and inspect:

 If you do not have version 4.0.20, follow the instructions at

https://dyalog.github.io/link/4.0/Usage/Installation/

⎕SE.Link.Version
4.0.20

https://dyalog.github.io/link/4.0/Usage/Installation/

TP3 – Link & Text Source Basics21

TP3 – Link & Text Source Basics22

TP3 – Link & Text Source Basics23

 To start a new project
)ns myns
]link.create myns /my/dir

 At least one of myns or /my/dir must exist

 Only one of myns or /my/dir may be populated

Starting a New Project

TP3 – Link & Text Source Basics24

TP3 – Link & Text Source Basics25

TP3 – Link & Text Source Basics26

 Read the general guidelines on the use of Link API Functions and
User Commands at https://dyalog.github.io/link/4.0/API/

 Create an empty namespace
 Create a link to a directory which does

not already exist
)ED a function in the namespace
 Verify that a source file is created in the directory
 Edit the file using notepad or another external editor
 Verify that the function is updated in the WS
)CLEAR, and re-create the link
 Verify that your code is loaded

Exercise 1

https://dyalog.github.io/link/4.0/API/

TP3 – Link & Text Source Basics27

Variables

TP3 – Link & Text Source Basics28

Variables

TP3 – Link & Text Source Basics29

 Create a variable containing a constant
that your application needs

 Cause it to be written to a file using
]Link.Add

 Inspect the file, edit it, and verify that
the new value appears in the workspace

 Can you write system variables to file?

Exercise 2

TP3 – Link & Text Source Basics30

Converting an Existing
Workspace

TP3 – Link & Text Source Basics31

Converting an Existing
Workspace

TP3 – Link & Text Source Basics32

TP3 – Link & Text Source Basics33

Changes made to
source files will
always be actioned

IF you are using
the file system
watcher

 Link updates source files when you "fix" in the Editor
 Link will NOT react to changes to source made via

other mechanisms, e.g.
 life←42 ⋄ dup←{⍵⍵}

)copy dfns cmpx

 ⎕FX 'r←dup x' 'r←x x'

 You can (must) use]link.add to notify Link that
source files should be updated

 When writing tools that modify source code, use
⎕SE.Link.Fix in place of ⎕FX.

]Link.Add

TP3 – Link & Text Source Basics34

 Each function, operator or array is linked to a file
 ”Scripted” namespaces and classes also link to one file per

object

 Each ”Unscripted” (aka ”Regular”) namespace links
to a directory

 If an exported namespace contains sub-namespaces
 Each one becomes a sub-directory

 If an imported directory contains subdirectories
 Each one becomes a namespace

Namespace ←→ Folder

TP3 – Link & Text Source Basics35

 Create a subdirectory in your source

 Verify that a corresponding namespace is
created in the workspace

)ED a function in the namespace

 Rename the subdirectory

 Verify the effect in the workspace

Exercise 2.5

TP3 – Link & Text Source Basics36

caseCode

TP3 – Link & Text Source Basics37

TP3 – Link & Text Source Basics38

 Export the workspace stats.dws

 Note that
 It contains two variables

 Has a non-default ⎕ML

 Has two names which differ only in case

Exercise 3

TP3 – Link & Text Source Basics39

 Use -caseCode or rename?

 Which variables should be considered
"source”?

 ⎕ML=3:
 –sysvars

]link.add ⎕ML

 Rewrite?

Exercise 3 - Discussion

TP3 – Link & Text Source Basics40

Exercise 3 – Morten's Solution
)load c:\devt\2024-TP3\stats

c:\devt\2024-SA3\stats.dws ⍝ saved Tue Oct 4 22:59:08 2022
)fns

ComputeStats InitCache MEAN Main Mean Root Run StdDev
)ed MEAN ⍝ rename to OLDMEAN
)erase MEAN
)vars

RESULTS STATFNS
⊃RESULTS

1 2 3 1 2 3 4 2 4 3 1
Mean 2 Mean 2.5 Mean 2.5
StdDev 0.8164965809 StdDev 1.118033989 StdDev 1.118033989

STATFNS
Mean StdDev

]link.export # c:\tmp\stats
Exported: # → c:\tmp\stats

]link.export ⎕ML c:\tmp\stats
Exported: #.⎕ML → c:/tmp/stats/⎕ML.apla

]link.export STATFNS c:\tmp\stats
Exported: #.STATFNS → c:/tmp/stats/STATFNS.apla

TP3 – Link & Text Source Basics41

Exercise 3 – Morten's Solution
)load c:\devt\2024-TP3\stats

c:\devt\2024-SA3\stats.dws ⍝ saved Tue Oct 4 22:59:08 2022
)fns

ComputeStats InitCache MEAN Main Mean Root Run StdDev
)ed MEAN ⍝ rename to OLDMEAN
)erase MEAN
)vars

RESULTS STATFNS
⊃RESULTS

1 2 3 1 2 3 4 2 4 3 1
Mean 2 Mean 2.5 Mean 2.5
StdDev 0.8164965809 StdDev 1.118033989 StdDev 1.118033989

STATFNS
Mean StdDev

]link.export # c:\tmp\stats
Exported: # → c:\tmp\stats

]link.export ⎕ML c:\tmp\stats
Exported: #.⎕ML → c:/tmp/stats/⎕ML.apla

]link.export STATFNS c:\tmp\stats
Exported: #.STATFNS → c:/tmp/stats/STATFNS.apla

TP3 – Link & Text Source Basics42

 Some objects that CAN be saved in a Dyalog workspace
have no meaningful textual representation
 GUI & COM objects

 Saving such "binary" objects is a bad idea
 They cannot be transferred between 32/64 or classic/unicode

 You must write code which creates these objects at run or
build time

Non-Representable Objects

TP3 – Link & Text Source Basics43

Example of explict creation of an otherwise un-saveable object:

∇ R←MakeOLEServer;ns;spec
[1] ⍝ Recreate the OLE Server before WS is built
[2] ns←#.StatsServer
[3] ns.⎕WC'OleServer'('ClassID' '{395E64DF-6B44-4515-B409-6A0A2E1ACD9B}')

('RunMode' 'SingleUse')
[4] spec←⊂'This function returns the mean' 'VT_VARIANT'
[5] spec,←⊂'InputNumbers' 'VT_VARIANT'
[6] ns.SetFnInfo'Mean'spec
[7] R←0

∇

Create an OLE Server…

TP3 – Link & Text Source Basics44

 Even if your "legacy" workspace is "flat"…
 It may contain modules that can benefit

from being organised into separate
directories

 The -flatten allows you to load code
organised into directories into a flat
workspace

 If you edit a function, the editor and Link
know from whence it came

The –flatten switch

TP3 – Link & Text Source Basics45

TP3 – Link & Text Source Basics46

TP3 – Link & Text Source Basics47

 Move the source files for the statistical
functions (Mean, StdDev, Root) to a sub-
directory called "statfns"

 Get the application to run again

Exercise 4

TP3 – Link & Text Source Basics48

 -flatten or refactor?

Exercise 4 - Discussion

TP3 – Link & Text Source Basics49

TP3 – Link & Text Source Basics50

 Configuration files (user or folder specific)
 Also used to record Stop and Trace settings

 Default to current namespace as source or target
(Create, Import, Export)

 Search Installed Library folders
 Multi-Line Character Data
 Transfer file timestamps to workspace
 Create Link from single Class or NS

Highlights of Link 4.0

TP3 – Link & Text Source Basics51

Configuration Files
]link.configure # watch:dir

Was watch:
]link.stop dup 1
Was dup ⍬

]link.configure c:\tmp\dup
Contents of "c:\tmp\dup/.linkconfig":
 Settings : watch:dir
 Stop/Trace:
 dup[1/]

]link.configure *
No configuration options set in "C:\Users\mkrom\Documents\.linkconfig"

* = User

ns or dir

TP3 – Link & Text Source Basics52

 Import, Export and Create default to
current namespace if given a single
argument

 In Link 3.0, you always had to write

Default to Current NS
)cs dup

]link.export c:\exports\dup

]link.export dup c:\exports\dup

TP3 – Link & Text Source Basics53

Search Library Folders
]link.import HttpCommand

Imported: #.HttpCommand ← C:\Program Files\Dyalog\
 Dyalog APL-64 20.0 Unicode\Library\Conga\HttpCommand.dyalog

Also: Linking single source file

TP3 – Link & Text Source Basics54

Plain Text Formats

cols←'red' 'blue' 'green'
]link.add cols
Added: #.cols

 Array Notation is not the best
way to represent matrices or
vectors or character vectors:

TP3 – Link & Text Source Basics55

Plain Text Formats
]link.configure # text:plain

Was text:
 cols←'red' 'blue' 'green'
]link.add cols
Added: #.cols

TP3 – Link & Text Source Basics56

Plain Text Formats
 Penultimate segment of name decides target representation

 This feature is still considered experimental

TP3 – Link & Text Source Basics57

File TimeStamps

]link.create # c:\tmp\dup
 mod←(2÷24)+21 ⎕ATX fns←'dup' 'trip'
 fns,⍪'DD-MM-YYYY hh:mm' (1200⌶) mod
 dup 05-09-2024 20:19
 trip 05-09-2024 23:27

 Link.Create sets ”AT” information
using file timesamps

TP3 – Link & Text Source Basics58

 Set the configuration for your project to use
text:plain

)CLEAR and re-create the Link
 Notice that statfns.apla still exists and has

been loaded
 The setting only affects how NEW files are created

 Create a new variable which is plain text – either
a matrix or a vector of vectors

 Use]link.add to save it and inspect the file

Exercise 5 – text:plain

TP3 – Link & Text Source Basics59

 If you need to take a break...

 Or a batch job crashes and saves a
workspace

 You can)SAVE with active links
 (Since Link 3.0)

 ... and pick up where you left off ...

Saved Workspaces with Links

TP3 – Link & Text Source Basics60

Saved Links
Create a Source Folder & Do some work

⎕MKDIR 'c:\tmp\dup'
(⊂'r←dup x' 'r←x x') ⎕NPUT 'c:\tmp\dup\dup.aplf'

]link.create # c:\tmp\dup
Linked: # ←→ c:\tmp\dup

)save c:\tmp\dup
c:\tmp\dup.dws ⍝ saved Thu Sep 5 20:19:10 2024

)off ⍝ Go to Lunch

Someone Edited the File While we were at Lunch
(⊂'r←dup x' 'r←x x ⍝ duplicate x') ⎕NPUT 'c:\tmp\dup\dup.aplf' 1

We return from Lunch

)load c:\tmp\dup
c:\tmp\dup.dws ⍝ saved Thu Sep 5 20:19:10 2024
Link Warning: IMPORTANT: 1 namespaces linked in this workspace: #
Link Warning: IMPORTANT: Link.Resync is required

TP3 – Link & Text Source Basics61

Saved Links
”Resync is Required”

]link.resync

1 update required: use -proceed option to synchronise

Name Direction File Comments

#.dup ← c:/tmp/dup/dup.aplf File is dated Now, WS copy is dated 1 minute ago

Instead, we mess things up a bit more...

)copy dfns cmpx

]link.resync

2 updates required: use -proceed option to synchronise

Name Direction File Comments

#.cmpx → Item has no corresponding file

#.dup ← c:/tmp/dup/dup.aplf File is dated Now, WS copy is dated 1 minute ago

Finally, clean up:

]link.resync –proceed

1 file read, 1 file updated

TP3 – Link & Text Source Basics62

)SAVE your workspace

)CLEAR or)OFF

 Edit and change one of the source files
using notepad or similar

)LOAD the workspace and sort things out

Exercise 6 –)SAVE with Links

TP3 – Link & Text Source Basics63

 Windows only, v18.2 or later:
Right click in the file explorer
 "Load with Dyalog" will do a Link.Create on

a selected folder, or import a selected file

 "Run with Dyalog" will look for a function
called Run and invoke it if it exists after the
link has been created.

]FileAssociations can be used
to select the default APL version

Launch from Source

TP3 – Link & Text Source Basics64

 Point to a file, or a directory
 Can be specified on the command line, or in a .dcfg

file
 Add LX='' to disable startup (just setting LOAD is

actually equivalent to "Run with Dyalog")

LOAD= Parameter

{

 Settings: {

 AutoPW: 1,

 MaxWS: "512M",

 LOAD: "C:/Git/stats"

 }

}

Example .dcfg file

TP3 – Link & Text Source Basics65

 It is fine (even encouraged!) to dynamically load
text source during development

 It is NOT recommended to dynamically load source
from large numbers of text files in production
environments

 Break links (or use Import rather than Create)
and)SAVE to build workspace for production use

Boot or Build?

TP3 – Link & Text Source Basics66

 Write a "Build" function

Exercise 7

TP3 – Link & Text Source Basics67

First There Was The Workspace

APL
Workspace

TP3 – Link & Text Source Basics68

Then There was Link

Source Code
in Text Files

APL
Workspace

Link

TP3 – Link & Text Source Basics69

Then There was Link (and git/svn etc)

Source Code
in Text Files

APL
Workspace

Link

Source
HistorySource

HistorySource
History

TP3 – Link & Text Source Basics70

 We have our own code under control

 The next step is to add tools to manage
”other people’s code”
 A PACKAGE manager

 To integrate the packages into our
application, we need
 A PROJECT manager

Packages

TP3 – Link & Text Source Basics71

So… What is a Package?

(From Longman Dictionary of Contemporary English)

TP3 – Link & Text Source Basics72

A Project is…
Source Code +
 Dependencies (packages)

loaded from a package
manager

 Environment configuration
 Development tools and

processes
 Can be opened and "set up" by

a Project Manager
 We will use ”Cider”

A Package is…
A "build" of a project...
 In a standard format
 Can be found, downloaded

and installed by a
"Package Manager"

 Cider supports the
development of Tatin
Packages

 Cider can load Tatin + NuGet
Packages

TP3 – Link & Text Source Basics73

 Load other code that we depend on
 Run some code on opening the project
 Run a build function
 Decide where to load the code
 Run tests
 Set Link options to be used when loading the

source code
 Set ⎕IO, ⎕ML

Introducing Cider

TP3 – Link & Text Source Basics74

]cider.createproject /tmp/tp3cp

When done, you should have:

)obs
tp3cp

So now you can

)ed tp3cp.Foo

Creating a Project

TP3 – Link & Text Source Basics75

A Cider Project Folder

TP3 – Link & Text Source Basics76

 If you have not already done it, activate Cider and Tatin
]Tools.Activate all
 restart APL
]UReset
]Cider.Version

 Create a Cider project
]Cider.CreateProject /folder/name
 Inspect the contents of the folder
 Create a function in the project namespace

)CLEAR and]Cider.OpenProject

Exercise 8

TP3 – Link & Text Source Basics77

Tatin
Package manager for Dyalog APL
A tasty way to package APLs
48 Packages

NuGet
Package manager for .NET
Related to "Chocolatey"
361,905 416,844 Packages

]z←tatin.listPackages
 {⍺,≢⍵}⌸{(¯1+⍵⍳'-')↑⍵}¨3↓z[;1]
 aplteam 42
 davin 4
 dyalog 2

¯2↑z
 dyalog-HttpCommand 1
 dyalog-Jarvis 1

]z←tatin.listPackages
 {⍺,≢⍵}⌸{(¯1+⍵⍳'-')↑⍵}¨3↓z[;1]
aplteam 44
davin 4
dyalog 5 ⍝ 150% growth!

¯5↑z
 dyalog-APLProcess 1
 dyalog-HttpCommand 1
 dyalog-Jarvis 1
 dyalog-NuGet 1
 dyalog-OpenAI 1

2023 2024

TP3 – Link & Text Source Basics78

Finding Packages – www.tatin.dev

TP3 – Link & Text Source Basics79

Finding Packages

TP3 – Link & Text Source Basics80

Finding Packages

53 packages is enough to (sometimes) make it difficult
to decide which one to use

TP3 – Link & Text Source Basics81

TP3 – Link & Text Source Basics82

TP3 – Link & Text Source Basics83

]tatin.listtags
 tags from https://tatin.dev

 apl-git-interface
 build
 calculations
 chm
 code-browsing
 code-coverage
 code-reviews
 command-generation
 communication-tools
 comparison-tool
 comparison-utilities
 components
 config-files
 converter
 copy
 cryptography
 date
 dates
 …
 …
 utilities
 validation
 webservice
 windows-event-log
 windows-registry
 winscp-interface
 write
 yes-or-no
 zip-tools

]Tatin.ListPackages -group=dyalog
Registry: https://tatin.dev
Group & Name # major versions
------------ ----------------
dyalogAPLProcess 1
dyalog-HttpCommand 1
dyalog-Jarvis 1
dyalog-NuGet 1
dyalog-OpenAI 1

]Tatin.ListPackages -tag=crypto
Registry: https://tatin.dev
Group & Name # major versions
------------ ----------------
aplteam-HashPasswords 1

]Tatin.ListPackages

TP3 – Link & Text Source Basics84

 Example: I use HttpCommand in just about every new project
 To add it to our Cider project:

]Cider.AddTatinDependencies HttpCommand
1 Tatin dependency added:
dyalog-HttpCommand-5.2.0

 Since we did not specify a version, we get the latest.
 A reference is created to the loaded package within our project space:

tp3cp.HttpCommand.Get 'www.dyalog.com'
[rc: 0 | msg: | HTTP Status: 200 "OK" | ≢Data: 22580]

Adding a Tatin Dependency

TP3 – Link & Text Source Basics85

 Add HttpCommand (or some other Tatin Package) to
your project

 Inspect your project folder

 Close and reopen the project to convince yourself that
it all works

 Update your function to use your new package

Exercise 9

TP3 – Link & Text Source Basics86

 NuGet is the .NET
package manager

 You can use NuGet packages
from Dyalog APL,
with .NET 6.0 or later

NuGet

TP3 – Link & Text Source Basics87

NuGet support
currently requires .NET
6.0, 7.0 or 8.0

Support for
"Framework" packages
MAY follow

 You must have .NET 6.0 or later, and
Dyalog APL configured to use it
(DYALOG_NETCORE=1).

⎕USING←''

System.Environment.Version

8.0.8

Adding a NuGet Package

TP3 – Link & Text Source Basics88

NuGet Tests

TP3 – Link & Text Source Basics89

TP3 – Link & Text Source Basics90

 We can add Clock to our Cider project (by default, adds the latest version):

]Cider.AddNuGetDependencies Clock

Clock 1.0.3

 A reference to a namespace hosting the .NET package is created:

tp3cp.Clock.UtcNow.(Hour Minute)

14 43

 In fact, the namespace is empty except for ⎕USING:

tp3cp.Clock.⎕USING

,c:/tmp/tp3cp/nuget-packages/published/Clock.dll

Adding a NuGet Package

TP3 – Link & Text Source Basics91

 Add Clock (or another NuGet package
of your choice) to your project

 Possible inspiration at

https://github.com/Dyalog/nuget/tree/main/APLSource/Tests

Exercise 10

TP3 – Link & Text Source Basics92

 We can add Clock to our Cider project (by default, adds the latest version).

 But more interesting:

]cider.addNuGetDependencies MailKit,MimeKit

Would you like to (re-)load all NuGet dependencies? (Y/n) y

MailKit MimeKit

 See the "ReadMail" Cider project in the TP3 folder:
]cider.openProject c:\devt\2024-TP3\ReadMail

Morten’s Solution

TP3 – Link & Text Source Basics93

We asked for these – what are the others?

TP3 – Link & Text Source Basics94

Dependencies of Dependencies
Great fleas have little fleas upon their backs to bite 'em,

And little fleas have lesser fleas, and so ad infinitum.

Augustus de Morgan

Both Tatin and NuGet will
automatically load such
dependencies

https://en.wikipedia.org/wiki/Ad_infinitum

TP3 – Link & Text Source Basics95

"Principal" dependencies (that we added)

TP3 – Link & Text Source Basics96

"Lesser" fleas

TP3 – Link & Text Source Basics97

"Principal" dependencies (that we added)

TP3 – Link & Text Source Basics98

]Cider.OpenProject C:\tmp\fleatest
Project successfully loaded and established in "#.fleatest"

)cs fleatest
#.fleatest

⎕NL -9
CiderConfig CompareFiles ZipArchive

CompareFiles
#._tatin.aplteam_CompareFiles_4_0_1.API

⍪#._tatin.⎕nl -9
aplteam_APLTreeUtils2_1_2_0
aplteam_CommTools_1_5_0
aplteam_CompareFiles_4_0_1
aplteam_DotNetZip_2_0_2
aplteam_FilesAndDirs_5_5_0
aplteam_OS_3_0_1
aplteam_ZipArchive_0_1_1

#._tatin.aplteam_CompareFiles_4_0_1.⎕NL -9
API APLTreeUtils2 Admin CommTools ComparisonTools FilesAndDirs TatinVars

Where Do Dependencies Go?

Our Dependencies

Lesser Fleas

TP3 – Link & Text Source Basics99

 Under Windows, Linux and macOS, .NET provides a "dotnet"
command which:
 Creates .NET projects that we use to define and manage dependencies

(complete with a C# class that we never use)
 Adds Dependencies
 "Publishes" collections of DLLs that implement packages

 Dyalog's NuGet support depends heavily on this
 We just set ⎕USING to point to the published DLLs
 The alternative is to try to replicate poorly documented .NET behaviours

dotnet command-line tool

TP3 – Link & Text Source Basics100

 NuGet DLL's go in a folder called "published"

NuGet Packages – Under the Covers

TP3 – Link & Text Source Basics101

 The dotnet command line tool has created some C#
code which "pretends" to use the NuGet packages

NuGet Packages – Under the Covers

TP3 – Link & Text Source Basics102

 The dotnet command line tool has created some C#
code which "pretends" to use the NuGet packages

NuGet Packages – Under the Covers

TP3 – Link & Text Source Basics103

Same Same but Different
Tatin NuGet

#.projectSpace.HttpCommand #.projectSpace.Clock

TP3 – Link & Text Source Basics104

The Cast, in order of appearance

Tatin is the APL Package Manager
A Package is a project wrapped up for consumption by others

Link Synchronises Source Files and Workspace
The workspace and source files are "Linked"

NuGet is the .NET Package Manager
The Dyalog.NET Bridge allows APL to use .NET libraries

Cider is a Project Manager
A Project is a linked source folder,
a config file, plus optional dependencies

	Slide 0: Link and the Basics of APL Source in Text Files
	Slide 1: Materials
	Slide 2: Goals
	Slide 3
	Slide 4: What exactly is Link?
	Slide 5: ”Old Timers”: Link replaces SALT
	Slide 6: About the File System Watcher
	Slide 7: Why is Link ?
	Slide 8: Why is Link ?
	Slide 9: Screen Shot from Mortens SA1 Slides
	Slide 10
	Slide 11: Other Benefits of Text Source
	Slide 12: Link in 2024 – Version 4.0
	Slide 13: Link is a GitHub Project
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Link is a GitHub Project
	Slide 18
	Slide 19
	Slide 20: Verify Link Version
	Slide 21
	Slide 22
	Slide 23: Starting a New Project
	Slide 24
	Slide 25
	Slide 26: Exercise 1
	Slide 27: Variables
	Slide 28: Variables
	Slide 29: Exercise 2
	Slide 30: Converting an Existing Workspace
	Slide 31: Converting an Existing Workspace
	Slide 32
	Slide 33:]Link.Add
	Slide 34: Namespace ←→ Folder
	Slide 35: Exercise 2.5
	Slide 36: caseCode
	Slide 37
	Slide 38: Exercise 3
	Slide 39: Exercise 3 - Discussion
	Slide 40: Exercise 3 – Morten's Solution
	Slide 41: Exercise 3 – Morten's Solution
	Slide 42: Non-Representable Objects
	Slide 43: Create an OLE Server…
	Slide 44: The –flatten switch
	Slide 45
	Slide 46
	Slide 47: Exercise 4
	Slide 48: Exercise 4 - Discussion
	Slide 49
	Slide 50: Highlights of Link 4.0
	Slide 51: Configuration Files
	Slide 52: Default to Current NS
	Slide 53: Search Library Folders
	Slide 54: Plain Text Formats
	Slide 55: Plain Text Formats
	Slide 56: Plain Text Formats
	Slide 57: File TimeStamps
	Slide 58: Exercise 5 – text:plain
	Slide 59: Saved Workspaces with Links
	Slide 60
	Slide 61
	Slide 62: Exercise 6 –)SAVE with Links
	Slide 63: Launch from Source
	Slide 64: LOAD= Parameter
	Slide 65: Boot or Build?
	Slide 66: Exercise 7
	Slide 67: First There Was The Workspace
	Slide 68: Then There was Link
	Slide 69: Then There was Link (and git/svn etc)
	Slide 70: Packages
	Slide 71: So… What is a Package?
	Slide 72
	Slide 73: Introducing Cider
	Slide 74: Creating a Project
	Slide 75: A Cider Project Folder
	Slide 76: Exercise 8
	Slide 77
	Slide 78: Finding Packages – www.tatin.dev
	Slide 79: Finding Packages
	Slide 80: Finding Packages
	Slide 81
	Slide 82
	Slide 83:]Tatin.ListPackages
	Slide 84: Adding a Tatin Dependency
	Slide 85: Exercise 9
	Slide 86: NuGet
	Slide 87: Adding a NuGet Package
	Slide 88: NuGet Tests
	Slide 89
	Slide 90: Adding a NuGet Package
	Slide 91: Exercise 10
	Slide 92: Morten’s Solution
	Slide 93
	Slide 94: Dependencies of Dependencies
	Slide 95
	Slide 96
	Slide 97
	Slide 98: Where Do Dependencies Go?
	Slide 99: dotnet command-line tool
	Slide 100: NuGet Packages – Under the Covers
	Slide 101: NuGet Packages – Under the Covers
	Slide 102: NuGet Packages – Under the Covers
	Slide 103: Same Same but Different
	Slide 104: The Cast, in order of appearance

