
Telemetry and APL
Exploring telemetry solutions in distributed systems and an 

implementation in Dyalog APL 

Gilgamesh Athoraya



Telemetry
ChatGPT

What the computer says about Telemetry:

Telemetry in distributed applications 
refers to the process of collecting and 
transmitting data about the 
performance, usage, and health of 
various components across the system 
for monitoring and analysis purposes.



Telemetry
3 Pillars

The three pillars of telemetry:

1. Logs

2. Metrics

3. Traces



Telemetry
Logs

Structured logs describing discrete events

• Timestamp

• Source

• Description

• Other useful data



Telemetry
Metrics

High level aggregations, counts and measures 
of various indicators:

• CPU

• Memory

• Jobs/Requests handled

• Etc.



Telemetry
Traces

A trace represents the complete path through 
the system when handling a request or 
executing a job.



Telemetry 
Setup

• Applications and services emit telemetry 
data

• Need a backend to store the data

• Need a frontend to visualize

• Maybe a monitoring tool to alert on certain 
triggers?



Telemetry 
Standard

OpenTelemetry

• Observability framework

• Vendor- and tool-agnostic

• Open source

• Collection of tools, APIs, SDKs and protocols



OpenTelemetry
Vendors

Long list of vendors that support 
OpenTelemetry:

• AWS

• Azure

• Google Cloud Platform

• Jaeger

• SigNoz

https://opentelemetry.io/ecosystem/vendors/



OpenTelemetry
Collector

Vendor-agnostic implementation of how to 
receive, process and export telemetry data.

• Local agent receives telemetry data from 
application

• Receiver supports multiple forms of the 
OpenTelemetry Protocol (OTLP)
• grpc

• http + protobuf

• http + json



Process flow using OtelCollector

• Metrics

• Logs

• Traces

APL

• Filter

• Modify

• Batch

• Enrich

Otel
Collector

• Visualize

• Search

• Alert

Telemetry

Service



OpenTelemetry
with APL

To use OpenTelemetry from APL we need an 
APL SDK that implements:

• the specification

• APIs

• Emits telemetry data



OpenTelemetry
with APL

• Send telemetry data using OTLP over 
HTTP+JSON to local Otel Collector agent

• Configure Otel Collector to batch messages 
and export to one or more backends

• Use local backend during test/development



Demo
• Simple example app that emits telemetry

• Use docker to start a local OtelCollector and 
backend



Summary

• OpenTelemetry is adopted by a large 
number of vendors

• SDKs available for many languages (APL is 
missing on the list)

• Recommendation is to use a local 
OtelCollector:
• Low latency

• Many extensions available as contribution 
plugins

• It supports HTTP+JSON, meaning no need to 
implement grpc and protobuf support in APL



Thanks for listening


	Slide 1: Telemetry and APL
	Slide 2: Telemetry ChatGPT
	Slide 3: Telemetry 3 Pillars
	Slide 4: Telemetry Logs
	Slide 5: Telemetry Metrics
	Slide 6: Telemetry Traces
	Slide 7: Telemetry Setup
	Slide 8: Telemetry Standard
	Slide 9: OpenTelemetry Vendors
	Slide 10: OpenTelemetry Collector
	Slide 11: Process flow using OtelCollector
	Slide 12: OpenTelemetry with APL
	Slide 13: OpenTelemetry with APL
	Slide 14: Demo
	Slide 15: Summary
	Slide 16: Thanks for listening

