
I should say to begin with that this is history from my perspective. If you had a
similar presentation from Pete Donnelly or John Daintree or even Morten Kronberg
it would be different.

Where we began:

Pauline Brand had a sister in Zilog.

Pauline is a very significant part of Dyalog's history. She was recruited from Atkins
when Dyadic Systems was about 4 months old. So 1977. Using Meredith Belbin's
team roles she is a classic "finisher".

Zilog had produced one of the really successful 8 bit processors of the late '70s and
was looking to produce a 16 bit processor. APL was a significant requirement for
computer offerings of the time – thanks to IBM. The 16 bit processor was the Z8000
which was not to see the same success as the Z80. Still the 2 sisters pulled the
managements together and an investment was arranged.

Dyadic recruited John Scholes who had left Atkins to go to the European Space
Agency and then had implemented APL for ICL. Both for 1900 and 2900 machines.

When it got to the stage of actually implementing I was placed in the team alongside
John and managed by David Crossley. John and I were working in Zilog's UK offices in
Maidenhead – a riverside town west of London.

This introduced me to a number of new things.

Firstly UNIX which Zilog had chosen as its operating system. It was not until I read an
obituary for Dennis Richie that I realised just how early we had got into UNIX.

Secondly screen based development. Until then My experience had been scrolling
paper terminals. (Not quite true. At Atkins I had done a statistics/APL project that
had used a Tektronix graphics terminal.)

This defined our environment. We had not had much choice so far – it was imposed.

First choice was to use C. This was not obvious. Zilog had its own low level
development language which was a serious contender. John Scholes thought C
would open up possibilities for a more portable implementation. This proved
absolutely true!

Second choice was whether we were to implement a first generation APL or a nested
array APL. John Scholes, who had already implemented APL on some restricted
hardware (ICL 1900) favoured just doing a first generation APL. I and David Crossley
pushed for a second generation APL. This was, probably, our most significant choice
but was made almost casually in an afternoon of discussion.

This decision did not affect us for a while. We had code to write that did not depend
on it.

I got on with writing the scanner – the bit of code that translates APL text into

tokens. John got on with writing the parser which is the bit of code that processes
the tokens and calls appropriate primitives. He was also writing the memory
management. It should be noted that the scanner was the first bit of C I wrote and
subsequent developers suffer as a result – sorry Silas.

The parser wasn't ready yet so I next coded a large primitive ⎕FMT. Which might
seem an odd place to start. Still not very proficient in C – sorry Vince.

The parser was now, sort of, operational so I could code primitives.

At this stage we had to make a choice. Boxed arrays or floating arrays. John's choice
was floating – he had been following the discussions.

We had documentation – the NARS blue book. We actually wound up implementing
more of it than STSC did. We coded to the only documentation we had so Paul
Berry's I P Sharp book, the NARS blue book and Xerox's documentation of their APL
implementation.

Since we had nested arrays we changed some of the inputs and outputs of primitives
to reflect that.

I was coding two primitives a day on average. Although the set primitives
(membership, dyadic ⍳, union, intersection, differ, unique) took longer they used a
common approach. I used hash tables for those.

We ran out of code space. Only had 64K. So I developed a way of using multiple
processes to get more. Using Unix pipes to pass arguments and results or for some
things entire workspaces. Building on these led to the development of auxiliary
processors as a means of customers being able to extend the language.

I could now use an innovative approach to)COPY and load one workspace into a
process and pipe the appropriate bits back into the user's workspace.

There was a discussion as to whether to implement the user commands)load and
the like or use proper primitives. The Dyadic employees who were still using various
APLs on a daily basis balked at losing the system commands so we implemented
them.

At about this point we had version 1 of Dyalog APL which Phil Goacher could
document and use our brown and cream colour scheme for those of you with long
memories.

Now we had an APL we could port. The first port was to a Gould which was a 32 bit
box – luxury. It also threw up a problem the solution to which was useful later and
elsewhere. The problem was that addresses were hard. 32 bit things had to be on 32
bit boundaries. 64 bit things (floating point) had to be on 64 bit boundaries. On a 32
bit machine all of our arrays started on 32 bit boundaries so we only had to juggle a
bit with doubles. Later the same approach was used with Decimal Floating Point 128
bit alignment and vector processors 256 bit alignment (I think – Marshall did most of

the vector processing code.).

We proceeded to port to a lot of new machines. The manufacturers needed to tick
the box that they had APL although they did not sell much of it. Talk to Pete about
how that worked financially. I just kept flying around the world doing ports. Those
days it was easier to move me about than to move machines to me.

We were still UNIX but then came DOS (not the operating system on IBM 360 but the
IBM/Microsoft one on Intel 8086). The 8086 and 80286 were horrible and we
avoided them. For a while we sold an add on board that used NatSemi processors
and provided UNIX and sensible addressing but it was a high entry cost.

Then came the 80386. It was a game changer. Sensible addressing, PharLap which
got DOS into 32 bit and MetaWare Hi C (came packaged with a copy of Mark’s
gospel) gave us a compiler. MKS Toolkit gave us UNIX like tools to use for our builds.
Suddenly (well not quite that quickly) we had a DOS product. Of course we were an
application that required multi processing so that we could do those tricks
with)COPY and the like. DOS was no help but the 80386 was. It was DOS so we had
low level access to everything and the 80386 had task swap segments. So I used
those.

Somewhere about then we did ⎕SM. This is still a good tool for green screen
applications but few still do those. Pauline, Pete, and Adam Curtin drove that
development and did a fantastic job. I had had some experience with both the Atari
ST and the three rivers/ICL Perq. I thought ⎕SM would have a limited life as GUI was
coming. I got that both right and wrong. ⎕SM is still used extensively by one of the
largest customers.

Then came Windows 3. Flat address space and I could not use the low level task
swap facilities. Still it did have some Multi processing. As a Unix guy I thought it was
horribly deficient but we could work with it.

Along came John Daintree and he produced ⎕WC. I largely ignored this which was my
mistake. The Windows object addressing was buried in a text left argument.
However the demand was to bring it out of there and make it part of the language.
We had adopted a Windows centric view of the object hierarchy the
big.smaller.smallerstill whereas I argued strongly for a
smallerstill⊃smaller⊃big approach. The existing left argument syntax
from ⎕WC won that. Still hurts a bit and it made the scanner more complex.

It had another implication that came later, consider

 big[index1].small[index2]

From which namespaces are index1 and index2 taken? The way John Scholes
implemented it was that they are taken from the current namespace. If we had gone
the other way then it would be different. I am not saying better. It was some time
before John noticed that we had done this without asking ourselves the question.

⎕WC was interesting in that we had choices to make for the implementation. JD
favoured writing directly to the Windows code. This would preclude a UNIX
implementation. There was something of a host of possibilities for doing similar on
UNIX as well as Windows. I explored Qt (pronounced cute) a little and there was
Mosaic and WxWidgets. None really convinced us that they were a long term
investment. JD wrote directly to the Windows API and the resulting ⎕WC was
successful. Our UNIX versions continued to use our green screen ⎕SM. As it has
turned out Qt has been successful and long term. So maybe we missed a trick.

At about the same time – early 90s – along came the DEC Alpha. A serious 64 bit
chip. I still enthuse about that chip despite it being little endian and wasting silicon
doing both VAX and Ieee floating point. It could have done a 128bit floating point
instead of the VAX code. We did a port but it always stood alone. We just pushed our
types to be 64 bit. There were (still are) issues with not being able to take a 64 bit
integer to a 64 bit double and back without a loss of precision. For this port we
extended fuzzy comparison to include 64 bit integers.

Development continued: Windows95, Windows NT (I quite liked that).

On a non technical aspect we split the company. IBM insisted that if you sold p-
series, about which we knew a lot, you had to sell i-series of which we knew nothing.
We split and merged the p-series side with a company that knew i-series. It broke
Pauline’s heart to do that. We have since dragged Karen and Andy back into the fold
but I think we have missed Pauline’s skills.

My son started a PhD, evaluating characteristics as emulsions were stirred, and was
using APL to throw very large boolean arrays about. I realised he was going to run
out of address space. I bought a second hand Sun UltraSPARC and sent an email at
work to say I was going to do a proper 64 bit port in my own time. Pete contacted
some customers to see if this was something they wanted and, crucially, would they
sponsor it. He got the support and we did the 64 bit port using my UltraSPARC and a
newly purchased Intel machine to use the brand new XP64 for Windows. My son
dropped out of his PhD following a cycling accident but we had made, what I think
was, a crucial development. It was much later that I realised that IBM mainframes
were restricted to a 2GiB address space and thus IBM's APL2 had that restriction.
Being a Linux/Unix guy I should point out that the restriction comes from Z/OS
(should that be pronounced zee OS?) not the hardware.

JD got into .NET in a big way but it didn't affect me very much. It probably would if I
was not retired as it has now reached Linux but not AIX.

John Scholes did his skunkworks Dfns project. Along with the Dfns workspace this
was a tour-du-force and a real boost for APL. The only issue, from my point of view,
is the static referencing. I preferred programming with dynamic referencing. The
static referencing has benefits with mathematical code analysis. Is anybody actually
doing that with APL code?

Monday’s papers clearly say “yes” to that so I am on the wrong side of history.

The next development was a learning curve for me as I did ⎕MAP. The learning was
about paging and memory layout. I could map a single page with our own pocket
header to precede the map of a file. The learning I did for this was crucial for the
work on Shared Code Files – see my presentation a few years ago.

Roger Hui came and brought with him “trains”. Yet another style of coding and loved
by some. I was now old and decrepit and, worse, did not write much APL code so
didn’t catch the bug. I think my younger self would have done so.

The last decision was taken when I gave a years notice that I planned to retire at age
75. I had planned to cut to a 4 day week at 70, 3 day week at 71, and so on. This
failed as I realised that I might be able to cut my time but the "crap" did not reduce.
So I stuck at 3 days a week. When I said I was to retire at 75 it was decided that I
would spend a year doing internal presentations on the code. Ask the guys –
especially Silas if this has proved useful. It certainly caused me to do a lot of revision
as I worked through code that was, in some cases, decades old. JD, John Scholes and
I had been to Microsoft in Seatle during the .NET development. I was sent because
“Geoff thinks differently”. I made it the main purpose of the code handover to
enable, the poor souls, who had to inherit the code to be able to understand
something of how different that thinking had been.

