
Dyalog North America Meetup, 11 April 2024

APL and Web Services

Brian Becker
APL Tools Architect
Dyalog, LTD

Web Services with Dyalog1

 What

 Consuming using HttpCommand

 Providing using Jarvis

 Ask questions!

Web Services

Web Services with Dyalog2

What is a Web Service?

 Let's ask a web service what a web service is…

Web Services with Dyalog3

What is a Web Service?

Web Services with Dyalog4

What is a Web Service?

Web Services with Dyalog5

Web Services

 Machine to machine

 Use a standard protocol (HTTP, HTTPS)

 Expose an Application Programming Interface (API)

Web Services with Dyalog6

Web Services

 Machine to machine

 Use a standard protocol (HTTP, HTTPS)

 Expose an Application Programming Interface (API)

Web Services with Dyalog7

Web Services

 Machine to machine

 Use a standard protocol (HTTP, HTTPS)

 Expose an Application Programming Interface (API)
 Server doesn't necessarily know what the client is

 Web page/JavaScript, Phone App, C#, .NET, APL

 Client doesn't know the server's internal workings

Web Services with Dyalog8

Client Examples:
A web browser,
HttpCommand, cURL,
JavaScript, Python

 HTTP is a request-response protocol
 A client sends a request to a server
 The server receives the request
 The server runs an application to process the

request
 The server sends a response back to the

client
 The client receives the response

HTTP Communications 101

Server Examples:
IIS, Apache, Nginx,
Jarvis,
DUI/MiServer

Web Services with Dyalog9

Client Examples:
A web browser,
HttpCommand, cURL,
JavaScript, Python

HTTP Communications 101

Server Examples:
IIS, Apache, Nginx,
Jarvis,
DUI/MiServer

Web Services with Dyalog10

 Find the documentation

 Determine if you need authentication credentials

 Register and obtain an API key

 Many web services provide a free, rate-limited, level of access

 Construct and send your request

 Process the service's response

Web Service API Usage Patterns

Web Services with Dyalog11

HttpCommand is a utility that is well-suited to enable the APLer to interact with web
services because it:

 Allows you to specify an HTTP request in a manner that is conducive to an APLer

 Sends a properly formatted HTTP request to the server

 Receives the server's response

 Decomposes the response in a manner that is conducive to an APLer

 Minimizes the need for you to learn a lot about HTTP

HttpCommand

Web Services with Dyalog12

 Create a new HttpCommand
 Specify:

 HTTP Method (GET, PUT, POST, etc)
 URL (https://api.github.com/repos)
 Any additional necessary headers (Content-Type, Authorization, etc)
 Any payload

 Send the request
 Examine and process the response

Typical HttpCommand Usage

https://api.github.com/repos

Web Services with Dyalog13

h ← HttpCommand.New ''

 h.URL ← 'dyalog.com'

 h.Command ← 'get'

 ⊢ r ← h.Run
[rc: 0 | msg: | HTTP Status: 200 "OK" | ≢Data: 24139]

Example

Web Services with Dyalog14

h ← HttpCommand.New 'get' 'dyalog.com'

 ⊢ r ← h.Run
[rc: 0 | msg: | HTTP Status: 200 "OK" | ≢Data: 24139]

Shortened Example

Web Services with Dyalog15

 Grabbing a web page

 Using a REST web service (GitHub)

 Using a non-REST web service (OpenAI)

Demo Time…

Web Services with Dyalog16

JSON AND REST SERVICE

Web Services with Dyalog17

JARVICE

Web Services with Dyalog18

JARVIS

Web Services with Dyalog19

Much like HttpCommand, Jarvis is designed with the APLer in mind:

 Client requests are POST requests with JSON payloads

 Web Service Endpoints are APL functions

 They take an APL array as a right argument

 They return an APL array as their result

 Jarvis handles all the rest

Jarvis

Web Services with Dyalog20

 Web service in 5 Minutes

 Limit endpoints

 Authentication

 Sessioning/State maintenance

More Demos

Web Services with Dyalog21

 Anything that can "speak" HTTP can talk to your web service
 Web page

 Phone app

 Another process

 Even HttpCommand ☺

Think about it…

Web Services with Dyalog22

 If you are sending sensitive content - use HTTPS

 Jarvis supports HTTP Basic authentication out of the box

 You can implement whatever authentication makes sense

 Sessions are independent and cannot see one another,
unless you do so in your application code.

Security

Web Services with Dyalog23

 Jarvis itself has very little overhead

 Performance may be impacted by
 Number of requests

 Size of requests

 Application code

 How much "state" is maintained on the server and for how long

Performance

Web Services with Dyalog24

At Dyalog'22, Morten and Brian ran a half-day workshop. We:
 took an application
 made it a Jarvis web service
 ran it in a Docker container
 moved it to the cloud (AWS)
 scaled it
 load-balanced it
 ran it securely using HTTPS

Scalability

Web Services with Dyalog25

The Plan Visualized… (from Dyalog'22)

Web Services with Dyalog26

The Plan Visualized…

Database

App

In the beginning, there was an Application…

Web Services with Dyalog27

Jarvis

Run the app as a service

Database

App

Web Services with Dyalog28

Docker Container

Jarvis

Run it in a container

Database

App

Web Services with Dyalog29

Split into Front and Back Ends

Database

Write Operations

Read Operations

Front End

Back End

We'll call this "Two-Tier"

Web Services with Dyalog30

"The Cloud" (AWS)

Try it in the cloud

Database

Write Operations

Read Operations

Web Services with Dyalog31

"The Cloud" (AWS)

Scale it up

Database

Write Operations

Read Operations

Web Services with Dyalog32

"The Cloud" (AWS)

Load balance it

Database

Write Operations

Read Operations
Lo

ad
 B

al
an

ce
r

Web Services with Dyalog33

"The Cloud" (AWS)

Secure it

Database

Write Operations

Read Operations
Lo

ad
 B

al
an

ce
r

Web Services with Dyalog34

 Jarvis can serve REST web services
 Instead of "functional" endpoints, you write a function for each

HTTP method your service will support

 Each function will parse the requested resource and take
appropriate action

 To me as an APLer, the JSON paradigm seems more natural

 If you have an interest in the REST paradigm, ask me

Jarvis and REST

Web Services with Dyalog35

 Finish the documentation!

 Add more logging and management capability

 JAWS – Jarvis And Web Sockets

In the Jarvis Pipeline

Web Services with Dyalog36

?
 ?
 ?

Questions?

	Slide 0: APL and Web Services
	Slide 1: Web Services
	Slide 2: What is a Web Service?
	Slide 3: What is a Web Service?
	Slide 4: What is a Web Service?
	Slide 5: Web Services
	Slide 6: Web Services
	Slide 7: Web Services
	Slide 8: HTTP Communications 101
	Slide 9: HTTP Communications 101
	Slide 10: Web Service API Usage Patterns
	Slide 11: HttpCommand
	Slide 12: Typical HttpCommand Usage
	Slide 13: Example
	Slide 14: Shortened Example
	Slide 15: Demo Time…
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Jarvis
	Slide 20: More Demos
	Slide 21: Think about it…
	Slide 22: Security
	Slide 23: Performance
	Slide 24: Scalability
	Slide 25: The Plan Visualized… (from Dyalog'22)
	Slide 26: The Plan Visualized…
	Slide 27: Run the app as a service
	Slide 28: Run it in a container
	Slide 29: Split into Front and Back Ends
	Slide 30: Try it in the cloud
	Slide 31: Scale it up
	Slide 32: Load balance it
	Slide 33: Secure it
	Slide 34: Jarvis and REST
	Slide 35: In the Jarvis Pipeline
	Slide 36: Questions?

