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 What

 Consuming using HttpCommand

 Providing using Jarvis

 Ask questions!

Web Services
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What is a Web Service?

 Let's ask a web service what a web service is…
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What is a Web Service?
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What is a Web Service?
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Web Services

 Machine to machine

 Use a standard protocol (HTTP, HTTPS)

 Expose an Application Programming Interface (API)
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Web Services

 Machine to machine

 Use a standard protocol (HTTP, HTTPS)

 Expose an Application Programming Interface (API)
 Server doesn't necessarily know what the client is

 Web page/JavaScript, Phone App, C#, .NET, APL

 Client doesn't know the server's internal workings
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Client Examples:
A web browser, 
HttpCommand, cURL, 
JavaScript, Python

 HTTP is a request-response protocol
 A client sends a request to a server
 The server receives the request
 The server runs an application to process the 

request
 The server sends a response back to the 

client
 The client receives the response

HTTP Communications 101

Server Examples:
IIS, Apache, Nginx, 
Jarvis, 
DUI/MiServer
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Client Examples:
A web browser, 
HttpCommand, cURL, 
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HTTP Communications 101

Server Examples:
IIS, Apache, Nginx, 
Jarvis, 
DUI/MiServer
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 Find the documentation

 Determine if you need authentication credentials

 Register and obtain an API key

 Many web services provide a free, rate-limited, level of access

 Construct and send your request

 Process the service's response 

Web Service API Usage Patterns
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HttpCommand is a utility that is well-suited to enable the APLer to interact with web 
services because it:

 Allows you to specify an HTTP request in a manner that is conducive to an APLer

 Sends a properly formatted HTTP request to the server

 Receives the server's response

 Decomposes the response in a manner that is conducive to an APLer

 Minimizes the need for you to learn a lot about HTTP

HttpCommand
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 Create a new HttpCommand
 Specify:

 HTTP Method (GET, PUT, POST, etc)
 URL (https://api.github.com/repos)
 Any additional necessary headers (Content-Type, Authorization, etc)
 Any payload

 Send the request
 Examine and process the response

Typical HttpCommand Usage

https://api.github.com/repos
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h         ← HttpCommand.New ''

      h.URL     ← 'dyalog.com'

      h.Command ← 'get'

      ⊢ r       ← h.Run
[rc: 0 | msg:  | HTTP Status: 200 "OK" | ≢Data: 24139]

Example
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h         ← HttpCommand.New 'get' 'dyalog.com'

      ⊢ r       ← h.Run
[rc: 0 | msg:  | HTTP Status: 200 "OK" | ≢Data: 24139]

Shortened Example
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 Grabbing a web page

 Using a REST web service (GitHub)

 Using a non-REST web service (OpenAI)

Demo Time…
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JSON AND REST SERVICE
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JARVICE
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JARVIS
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Much like HttpCommand, Jarvis is designed with the APLer in mind:

 Client requests are POST requests with JSON payloads

 Web Service Endpoints are APL functions

 They take an APL array as a right argument

 They return an APL array as their result

 Jarvis handles all the rest

Jarvis
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 Web service in 5 Minutes

 Limit endpoints

 Authentication

 Sessioning/State maintenance

More Demos
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 Anything that can "speak" HTTP can talk to your web service
 Web page

 Phone app

 Another process

 Even HttpCommand ☺ 

Think about it…
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 If you are sending sensitive content - use HTTPS

 Jarvis supports HTTP Basic authentication out of the box

 You can implement whatever authentication makes sense

 Sessions are independent and cannot see one another, 
unless you do so in your application code.

Security
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 Jarvis itself has very little overhead

 Performance may be impacted by
 Number of requests

 Size of requests

 Application code

 How much "state" is maintained on the server and for how long

Performance
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At Dyalog'22, Morten and Brian ran a half-day workshop. We:
 took an application
 made it a Jarvis web service
 ran it in a Docker container
 moved it to the cloud (AWS)
 scaled it
 load-balanced it
 ran it securely using HTTPS

Scalability
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The Plan Visualized… (from Dyalog'22)
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The Plan Visualized…

Database

App

In the beginning, there was an Application…
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Jarvis

Run the app as a service

Database

App
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Docker Container

Jarvis

Run it in a container

Database

App
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Split into Front and Back Ends

Database

Write Operations

Read Operations

Front End

Back End

We'll call this "Two-Tier"
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"The Cloud" (AWS)

Try it in the cloud

Database

Write Operations

Read Operations
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"The Cloud" (AWS)

Scale it up

Database

Write Operations

Read Operations
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"The Cloud" (AWS)

Load balance it

Database

Write Operations

Read Operations
Lo

ad
 B

al
an
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r



Web Services with Dyalog33

"The Cloud" (AWS)

Secure it

Database

Write Operations

Read Operations
Lo

ad
 B

al
an

ce
r
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 Jarvis can serve REST web services
 Instead of "functional" endpoints, you write a function for each 

HTTP method your service will support

 Each function will parse the requested resource and take 
appropriate action

 To me as an APLer, the JSON paradigm seems more natural

 If you have an interest in the REST paradigm, ask me

Jarvis and REST
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 Finish the documentation!

 Add more logging and management capability

 JAWS – Jarvis And Web Sockets

In the Jarvis Pipeline 
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?
                                                                       ?
                       ?

Questions?
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