DOYALOC

Experimenting with
Large Language Models
for APL

Rich Park

Neural Networks and Deep Learning in 2024

Experimenting with Large Language Models for APL DYALOC

April 2023

Will Smith Eating Spaghetti
by Reddit user chaindrop using StableDiffusion
https://www.youtube.com/watch?v=XQr4Xklgzw8

Experimenting with Large Language Models for APL DYALOC

https://www.youtube.com/watch?v=XQr4Xklqzw8

June 2024

Will Smith Eating Spaghetti
by Reddit user jwhkccc using Kling

https://www.reddit.com/r/ChatGPT/comments/1dgbysz/will s
mith eating spaghetti kling june 2024/

Experimenting with Large Language Models for APL DYALOC

https://www.reddit.com/r/ChatGPT/comments/1dqbysz/will_smith_eating_spaghetti_kling_june_2024/
https://www.reddit.com/r/ChatGPT/comments/1dqbysz/will_smith_eating_spaghetti_kling_june_2024/

THIS 1S YOUR MACHINE (EARNING SYSTETM?

YOP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSWERS ON THE OTHER SIDE.

WHAT IF THE ANSIJERS ARE LIRONG?)

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT

XKCD 1838

This work is licensed under a Creative Commons
Attribution-NonCommercial 2.5 License.

Experimenting with Large Language Models for APL DYALOC

https://xkcd.com/1838/
https://creativecommons.org/licenses/by-nc/2.5/
https://creativecommons.org/licenses/by-nc/2.5/

OpenAl GPT 3.5

GetCatFact « {
response « [JCURL 'https://catfact.ninja/fact’

fact « response -4 'fact' i1 response

fact

} Write a dfn in Dyalog
APL to fetch a fact

from the cat facts api

Experimenting with Large Language Models for APL DYALOC

OpenAl GPT 3.5

GetCatFact « {
response « [JCURL 'https://catfact.ninja/fact’
fact « response + 'fact' 1 response
fact

}

Explanation:
1.0CURL 'https://catfact.ninja/fact':Thissendsa GET request to
the Cat Facts APl endpoint. OCURL fetches the JSON response from the API.

2.response 4 'fact' 1 response: This extracts the value associated
with the key "fact" from the JSON response by using the Key Operator ().

3. fact: The result is a string containing a cat fact.

Experimenting with Large Language Models for APL DYALOC

Claude 3.5 Sonnet

CatFact<«{
url«<'https;

LENGTH ERROR
req«[INE CatFact[2] reg<ONEW
HttpCommand 'GET ' (url)

A

resul t«
fact<«[]JSQ

Experimenting with Large Language Models for APL DYALOC

Claude 3.5 Sonnet

CatFact<«{

url«'https://catfact.ninja/fact’
req«[JNEW HttpCommand(('GET' url))
result<«req.Run

fact<[JIJSON result.Data

fact.fact

Experimenting with Large Language Models for APL DYALOC

Claude 3.5 Sonnet

CatFact''

British cat owners spend roughly 550
million pounds yearly on cat food.

Experimenting with Large Language Models for APL DYALOC

O Register/Log in

|

APL

1:1-2-3

2: Areas

3: Selection

4: Tables

5: Backwards
6: Palindrome
7: Palindromes

8: Heat

w
v
w
v
4
L 4
L 4
L 4
w

9: Babushka

@

10: X

Your Answers

DYALOC

[reno]

é‘gé Welcome to the APL Challenge!

The deadline for the current round (2024.4) is Friday 31 January 2025 at 09:00 UTC (in 67 days).

APL is a programming language that will change the way you think about sclving problems. You don’t need to know any APL or pregramming at all to
participate in this challenge; the question texts will teach you everything you need to know to progress. To do this, we have kept what we teach very
simple, even though APL is slightly more complicated than what we describe.

There are four rounds of the APL Challenge each year. You don't need to participate in an earlier round to participate in the current one. Each round
has ten problems and runs for three months, after which Dyalog Ltd &z awards three USD 100 prizes. You don’t have to answer every question, but your
chance of winning increases as you answer more questions. A list of winners of previous rounds is available on the Dyalog website.

If you're interested but don’t want to participate in this round, please register anyway (using the button at the top) so that we can notify you of
updates and tell you about future rounds. You can ask us to stop sending you emails at any time.

Let's get started...

Use TryAPL 7 to experiment and find your answer. You can write APL symbols by clicking on them in the language bar above the area where you write

APL code.

Although you can begin without registering — most browsers will store your answers until you register — you must be registered and logged in to

submit (send in) your answers. When you're happy with your answer, hit & Submit|. The system will only allow you to submit correct answers.

Several problems include some data you need. You should be able to copy text that is written with code Letters Like this by clicking on it, but
note that not all browsers allow this.

¥ Expand all Collapse all &

W Prizes

| |
[vDetaiIed rules }
[l

v Frequentlv Asked Questions (FAQ)

11

Let me help solve this first APL problem.

The instruction introduces the iota operator « which generates a sequence of integers

from 1 to a given number.

Since we need the numbers from 1to 42, we simply need to write:

apl Copy

L 42

This will generate exactly what we need: a sequence of integers from 1 to 42, with each

number separated by a space.

The output will be:
123456789101112131415161718192021222324 2526 27282930 3132 33 34 3536 37
3839404142

Would you like to move on to the next problem?

(D Claude does not have the ability to run the code it generates yet.

YALOC

@ 3: Selection

In APL, text must appear between single quotes ('). For example, 'aABC' will give a result
that looks like ABC .

You can select specific letters from a text by putting square brackets ([]) to the right of
the text. Inside the square brackets, you put numbers that say which letters you want to get
from the text. For example, 'ABCDE'[1] gives you the letter A because that's the 1st letter
of 'ABCDE' . Similarly, "ABCDE'[5 2 2] gives you EBB , because:

@ That's not quite right. Your expression returns oLaoaAL when it should return 6o pPoLLY .
Try again - your indices should refer to the positions of the characters you want to return.

LRy}

apl Copy

'DYALOG APL'[7 5485 3 3 10]

(D Claude does not have the ability to run the code it generates yet.

12 DVALOC

13

Let me count the positions for each character I need:
Gisat4

Oisat5

spaceisat?7

Pisat8

Oisat5s

Lisato

Lisat6

Yisat2

apl

'DYALOG APL"[4

() Claude does not have the ability to run the code it generates yet.

@ G is not at position 4 of 'DYALOG APL' . G is at position 6.

Copy

'ALOC

14

Al, let me count again:
DYALOG (space) APL
12345678910

For "GO POLLY":
Gisat6

Oisat5s
spaceisat?7
Pisat9

Oisat$s

Lisat4

Lisat4

Yisat2

apl

() Claude does not have the ability to run the code it generates yet.

Copy

YALOC

15

@ Wow, you got that one straight away! Okay, here's our last problem. Good luck!
10: X Marks the Spot

Using everything that you've learnt so far, write a function that takes a size as right
argument and draws a large X of that size. Use backslash symbols (\) and slash symbols
(/) for the diagonals:

Copy

Let me solve this step by step:

{answer} 5

DVYALOC

@ Well, if you have a character vector * \/X' , what numbers would you need to get each of
those characters from an indexing expression?

Ah! Let me think:

e Space''would be 1
+ Backslash " would be 2
s Forward slash '/' would be 3

¢ 'X'would be 4

Soif I could create a matrix of these numbers in the right pattern, I could just index into
" \/x' I Let me try:

apl Copy

VX)) [1+(w) e = (w) e =Puw) 1}

(© Claude does not have the ability to run the code it generates yet.

@ That's really really close! The expression to generate indices is missing parentheses, so it
16 generates an error.

DVYALOC

Ah yes! We need to properly group the operations to create our index matrix. Here's the
corrected version:

apl Copy

VXD [1+((w) e =w)+((w)e.=Quw)]}

(D Claude does not have the ability to run the code it generates yet.

@ Okay, lastly, we need to make sure that trailing diagonals have the number 3 while leading
diagonals stay as they are in your solution with the number 2. How might we increase the
value of trailing diagonals?

Ah - if we add 1 to the trailing diagonal matrix instead of just adding it directly, that would
turn those 1s into 2s, making them index the forward slash instead of the backslash:

apl Copy

VX)) [+ ((w) e muw)+2x ((w) = . =Pw) | }

DVYALOC

LyndonWords<+{{

A Implements Duval's algorithm for generating Lyndon words

A a: alphabet (default Binary)

A w: max length of Lyndon words to generate

A «: all Lyndon words up to length w

010+1

a+«'01"

alphabet«a

z+«#alphabet A Mnemonic: z is the last letter of the alphabet
length+~w

result«

Generate«{

Oepw:result A No more words to find: return result
next«1+@(#w)rw A Increment last non-z symbol
result,«calphabet[next] A Append word to result

vV wordi~-+/a\¢z=word«lengthpnext A Repeat word to max length and drop trailing zs

A This seed means the first word generated will be ,1
A (the word containing only the first symbol of the alphabet)
Generate,0

Claude 3.5 Sonnet

LyndonWords 4

19

01]0001(001|0011|01]011|0111|1
"APL' LyndonWords 3
A|AAP|AAL|AP|APP|APL[AL|[ALP|ALL PPL|{PL|PLL]|L
Experimenting with Large Language Models for APL DYALOC

Claude 3.5 Sonnet

"APL'’

LyndonWords 3

AAP

AAL

AP

APP

APL

AL

ALP

ALL

PPL

PL

PLL

540l (13)¢7c" AAP'

AAP [A

PA

PAA

Behind operator o

Coming in version 20.0

20

Experimenting with Large Language Models for APL

DYALOC

21

// Example usage
int main() {

&=

const char* alphabet = "DYA"; // Binary alphabet
int max len = 5; // Maximum word length

klock_t begin = clock();
WordList* words = lyndon words(alphabet, max len);
clock_t end = clock();

printf("Lyndon words up to length %d:\n", max len);
for (int i = 0; 1 < words->count; i++) {
| printf("ss\n", words->words[i]);

}

double time spent = (double)(end - begin);
printf("computed in %f milliseconds\n", time spent);

free word list(words);

return 0;
DYALOC

22

Jruntime "'DYALOG'LyndonWords 8"

* Benchmarking "'DYALOG'LyndonWords 8"
(ms)

CPU (avg): 1501

Elapsed: 1501

1mn

YAYAA
YAA
YAAA
YAAAA
A

computed in 53.000000 milliseconds

Experimenting with Large Language Models for APL DYALOC

:Namespace SQLite
A Initialize core SQLite function bindings
dir<>[JSH'pwd'
ONA 'I4 ',dir,'/libsqlite3.so|sqlite3_open <C[] >P'
ONA 'I4 ',dir,'/libsqlite3.so|sqlite3 _close P
ONA 'I4 ',dir,'/libsqglite3.so|sqlite3_exec P <C[] P P >P'
ONA ‘U4 ',dir,'/libsqlite3.so|sqlite3_errmsg P’

A Statement handling

ONA 'I4 ',dir,"'/libsqlite3.so|sqlite3_prepare_v2 P <0T I4 >P >P'
ONA 'I4 ',dir,'/libsqlite3.so|sqlite3_step P'

ONA 'I4 ',dir,'/libsqlite3.so|sqlite3 _finalize P'

ONA 'I4 ',dir,'/libsqglite3.so|sqlite3 _reset P

A Column access
ONA 'P ',dir,'/libsqglite3.so|sqlite3_column_text P I4'
ONA 'I4 ',dir,'/libsqglite3.so|sqlite3_column_int P I4'

24

Exper

(rc db)+«OpenDatabase filename;handle

AR Opens a SQLite database
handle«0

rc+>sqlite3_open filename handle
db+>handle

rc+~CloseDatabase db
A Closes a SQLite database
rc+«>sqlite3_close db

(rc msg)«~ExecuteSQL(db sql):errmsg
A Executes a SQL statement
errmsg+0
rc+>sqlite3_exec db sql 0 0 errmsg
:If rc=0

msg+'ERROR: ',GetError db

-0
:EndIf

msg+

DYALOC

APL Wiki

Main page

Recent changes
Random page
Categories

Help about MediaWiki

Quick links

Overview

Running APL

Learning resources
Chat rooms and forums

Tools

What links here
Related changes
Upload file
Special pages

30

& RichPark Talk CDark mode Preferences Watchlist Contributions Log out

Page Discussion Read Edit View history More v | Search APL Wiki Q

APL Quest

APL Quest is the title applied to the collection of phase 1 problems from the
2013-2023 APL Problem Solving Competition rounds, and to the
associated live chat sessions, sample solutions!!! and video follow-ups.[2!
The problem texts were written by Brian Beckerl®! and the chat events were
held by Adam Brudzewsky (who also recorded the videos) with guest
appearances by Richard Park, from 4 February 2022 until 8 March 2024.
The problems are available online as a learning resource, complete with
automatic validation of solutions.4]

Still frame from a follow-up video. =

Contents [hide]
1 Sessions
1.1 Problems from 2013
1.2 Problems from 2014
1.3 Problems from 2015
1.4 Problems from 2016
1.5 Problems from 2017

~Asan

E)Aq;)(;rilr.nenrting with Large Language Models for APL DYALOC

31

Al Assistant in Cursor

1
2

3

. oo
s oe
3

7

8

(

>

20 def eval_board(board, player
2 T207 <5, 15, 3,

5 R TR (IR
2 i % % % % W

2 % B A& 3w W

P 15 9 @ 6 a8 a0k Tor mave in ‘

29 [-20, 40, -5, -5, =5, -5, -0, -20), (o i
0 (120, =20, 20, 5, 5. 20, =20, 120]

3]

2

3n score = 0

a plece_count = 0

38 veighted_score = 0 T i sy

3 sarent

) # Caleulate plece differance and position veights

3 for 1 i range(8):

3 for § in range(8):

“0 1f board[11(3] I« 0: -

" plece_value = 1 1 board[11(3] == player else -1

w plece_count += plece_value

“ veighted_score <= place_vatue = weights{11(3] st
w

' # Combine heuristics (you can adjust these veights)

4 plece_veight = 1.0

W oosition veioht = 1.0

somtus ouTPUT OmUocONSOLE TeuWAL poRTs B 4-D8 -~ X

* (venv) stefanSstefan-n2-2023 demo % python othello.py
foh

venv) stefan@stefan-m2-2023 demo % [

7% D search [f=Ni Koy
b- @ cnar +OH x
@ sy Ay gy S

DEMO > # otheto py

Pl o) 000/11:32

Experimenting with Large Language Models for APL

DYALOC

https://www.youtube.com/watch?v=iYrfSLQHCdc

© Dyalog Librarian (DAAL):
I'm DAAL, the Dyalog APL Al Librarian. | have access to Dyalog's documentation that | can search through to provide detailed answers and references. Note: | occasionally get things wrong, so please always consult the source references.

How can | serialise and compress an arbitrary APL array?

© Dyalog Librarian (DAAL):

To serialize and compress an arbitrary APL array, you can use the following approach which involves two main steps: serialization followed by compression.

Step 1: Serialize the APL Array

You can serialize the array using the I-Beam operator 2207 . The process is initiated by calling 1(220T) with the array you want to serialize. This operation converts the array into a sint_vector (a special type of integer vector) that contains the serialized form
of the array.

Example:

a « 'Hello, World!'
serializedArray ~ 1(220T) a

Step 2: Compress the Serialized Array
After obtaining the serialized vector, you can compress it using another I-Beam operator, 219T . The first argument specifies the compression method; for example, you could use 1 for LZ4 compression.
Example:

compressedArray ~ 1(2197) serializedArray

Complete Example:

Here’s how you would write it all together in APL:
a « 'Hello, ¥orld!"' a Original array
serializedArray « 1(220T) a A Step 1: Serialize
compressedArray ~ 1(2197) serializedArray a Step 2: Compress

Deserialization and Decompression
To reverse the process (i.e., to deserialize and decompress), you would perform the following steps:

1. Decompress the compressed data:

decompressedArray « 0(219T7) compressedArray

32 Experimenting with Large Language Models for APL DYALOC

How do | generate random numbers between 30 and 50 inclusive?

Generating Random Numbers in Dyalog APL
To generate random numbers between 30 and 50 inclusive in Dyalog APL, you can use the Roll (2) function along with some
arithmetic operations. The Roll function generates random integers within a specified range.
Here's how you can do it:
e Determine the range: You want numbers between 30 and 50 inclusive, a total of 21 numbers (50 - 30 + 1= 21).

s Generate random integers from 1to 21: 221 will generate a single random integer between 1 and 21. You can replace 21
with any positive integer to generate a different number of random integers. 1 2

« Shift the range: Add 29 to the result to shift the range from 1-21 to 30-50: 29+221 2
Example:

294221
34

This will generate a single random number between 30 and 50. You can generate multiple random numbers by changing the left
argument of the roll function. For example:

29+21@p21
39 46 35 38 47 34 43 36 49 45
This will generate a vector of 10 random numbers between 30 and 50. 4
Key Points:

* The Roll function generates integers. If you need random decimal numbers, you can use the approach described in source 3

* The random number generator in Dyalog APL uses a seed value stored in the system variable ORL. You can control the seed
to generate repeatable sequences of random numbers. 5 6
e You can find more information on the 2 function, ORL, and generating random numbers in sources 1 2 3 4

D |ﬁ Qﬂ I Save to note

YALOC

How do | tell a running Dyalog session to accept RIDE connections?

Enabling RIDE Connections in a Running Dyalog Session

The sources indicate that you can control RIDE connections to a running Dyalog interpreter using the system function 3502T. 1
Calling 350210 will disconnect any currently active RIDE connections and prevent any future connections from being made.
2
350211 will attempt to enable RIDE. The interpreter uses the value of the initialisation string to determine the connection
details. 2
=If the initialisation string is not defined correctly, the result (R) will be 64. 2
=If the necessary Conga DLLs/shared libraries are not available, R will be 32. 2
#You can also supply a simple character vector as the right argument (Y) to 3502T. 1 2 This character vector represents the
initialisation string and allows you to update the connection details. For example, to update the initialisation string to
'SERVE::4511" you would call: 3502T"SERVE::4511". 2 You could then enable RIDE with the updated initialisation string using
3502T11. 3
Important Considerations:
+ Runtime vs. Development Interpreter:
= Runtime interpreters have RIDE disabled by default, regardless of whether the RIDE_INIT environment variable is set. The
only way to enable RIDE in a runtime interpreter is by calling 350211. 4
- Development interpreters will enable RIDE if the RIDE_INIT environment variable is set on startup, assuming the RIDE
DLL/shared library is available and the RIDE_INIT variable is correctly formatted. If these conditions aren't met, the
interpreter will exit with a non-zero exit code. If RIDE_INIT is not set, the development interpreter will start with RIDE
disabled. 4
« Security: Enabling RIDE access to applications using the runtime interpreter exposes the application's APL code. The APL
code must explicitly grant permission for a RIDE client to connect to the runtime interpreter, ensuring that connection
rights are always controlled within the code itself. 3

« RIDE User Guide: For more detailed information about RIDE and its usage, refer to the RIDE User Guide, as referenced in
34 the sources. 1 5 6 7

Let me know if you have any specific scenarios or questions about managing RIDE connections, and I'll do my best to help!

ALOC

Give me a cupcake recipe.

The sources provided contain information on programming in the Dyalog APL language. There is no information about cupcake
recipes.

D ﬂb Q] I Save to note

Start typing... . % Notebook guide

NotebookLM can make mistakes, so double-check it.

= Close chat

35 Experimenting with Large Language Models for APL DYALOC

36

@ Hi there Claude. Today, I'd like you to help me implement a k-means clustering algorithm in
APL. In particular, you're going to be our mathematician and | will be your expert APLer. |
have some test data, but I'd like you to help me by describing the steps to implement k-
means.

We'll start with 2-dimensions. The data is the Lot Area and Sale Price of homes in NYC.

I'll help you break down the k-means clustering algorithm for 2D data focused on Lot Area
and Sale Price. K-means is an iterative algorithm that aims to partition n observations into
K clusters. Let me outline the Key steps:

1. Initialization:

Choose Kk initial cluster centroids randomly from your data points

Each centroid will be a 2D point with (Lot Area, Sale Price) coordinates

2. Assignment Step:

For each data point, calculate its distance to all k centroids

* Assign each point to the nearest centroid

LOC

Clustering Algorithms

Optimal Number of Clusters

Image from Scikit-learn: Machine Learning in
Python, Pedregosa et al., JMLR 12, pp. 2825-
2830, 2011.

T T T T T T T
—10.0 7.5 -5.0 —2.5 0.0 2.5 5.0

37 Experimenting with Large Language Models for APL DVYALOC

https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html

KMeans
(n ma
A max:
A n:
A w:
End<«{

«{

X) <ol

maximum iterations
number of clusters
data set

a=w:1 A converged

i=max-i+<«1

}

ComputeCentroids«{
d«0.5%x~+/x~qa(-°1°1 2)w
g<di51 0|/d

g{(
}

i<«0

+#+1[#)w}Ha

I«{(ca)lw}

cen(?

ofIF)w

w ComputeCentroids*Endrc

38

scalar integer
scalar integer
numeric matrix 1 column per field

A maximum iterations reached

o)

distance from points to centroids
cluster (group) for each data point
A new clusters are means of points in each group

o)

A guess random centroids
A compute centroids

Experimenting with Large Language Models for APL DYALOC

@ Those are great suggestions - but it seems like a lot of configuration for a single function. |
have some ideas, but I'd like to hear how you'd go about incorporating these.

For handling multiple configuration options in APL, I can think of a few approaches:

1. Namespace-based Configuration:

apl

7

V ns<DefaultcConfig

5.maxiter<1e0
s.epsilon<1E™6
s.distance<"euclidean’
s.1init«<'random’

s.scale<"none’

(8 oL,

YALOC

V ns<DefaultConfig
ns<OnNs *°

ns. k<3

ns.maxiter<106

ns.epsilon«<1E"6
.distance<"euclidean’
.init<'random’
.scale<«"none’

Then users could:

apl

cfg«DefaultConfig
cfg.ke5
cfg.scale« 'minmax’

data KMeans cfg

EXperimenting with Large Language Models Tor APL —~YALOC

2. Modifier-based Approach: Split into smaller functions with modifiers:

apl Copy

data (k KMeans WithDistance 'manhattan’) WithScale ‘zscore’

3. Dictionary/Nested Array Configuration:
apl Copy

optsec('k’ 3)('maxiter' 10@)('epsilon’ 1E°6)...

data KMeans opts

I'm curious which approach you were thinking of? Each has different trade-offs in terms
of APL idioms and user-friendliness.

41 Experimenting with Large Language Models for APL DYALOC

KMeans
(n ma
A max:
A n:
A w:
End<«{

«{

X) <ol

maximum iterations
number of clusters
data set

a=w:1 A converged

i=max-i+<«1

}

ComputeCentroids«{
d«0.5%x~+/x~qa(-°1°1 2)w
g<di51 0|/d

g{(
}

i<«0

+#+1[#)w}Ha

I«{(ca)lw}

cen(?

ofIF)w

w ComputeCentroids*Endrc

42

scalar integer
scalar integer
numeric matrix 1 column per field

A maximum iterations reached

o)

distance from points to centroids
cluster (group) for each data point
A new clusters are means of points in each group

o)

A guess random centroids
A compute centroids

Experimenting with Large Language Models for APL DYALOC

43

Convergence Threshold (¢)

End<«{
o=w:1 A converged
i=max-i+<«l A maximum iterations reached

}

Experimenting with Large Language Models for APL

DYALOC

44

Convergence Threshold (¢)

End<«{
d2«+/x~0-w A squared distance from previous centroids
r/d2zex2:1 A converged
i=max-i+<«l A maximum iterations reached

Experimenting with Large Language Models for APL DYALOC

KMeans<«{
(n max)<«a

A max: maximum iterations :: scalar integer

A n: number of clusters :: scalar integer

A w: data set :: numeric matrix 1 column per field

End<«{

d2«+/x~0-w A squared distance from previous centroids
A/d2<ex2:1 A converged
i=max-i+<l A maximum iterations reached

}

ComputeCentroids«{

d«0.5%x~+/x=~qg(-°91%1 2)w A distance from points to centroids
g«diel 0|/d A cluster (group) for each data point
g{ (+#+1[#)w}Ba A new clusters are means of points in each group
}
i«0
I<{(ca)lw}
cen(?0#Ir)w A guess random centroids

w ComputeCentroids*Endrc A compute centroids

}

45 Experimenting with Large Language Models for APL DVYALOC

46

Distance Metric

d«0.5%~+/x~q(-°1e1 2)w

A distance from points to centroids

Experimenting with Large Language Models for APL DYALOC

a7

Distance Metric

d«<0.5%x~+/x=~q(-°1°1 2)w A Euclidean distance
d«+/|a(-°1°1 2)w A Manhattan distance
d<(a+.xQw)+oo.x0{0.5x~+/x~w}w A Cosine similarity

Experimenting with Large Language Models for APL

DYALOC

@ Where do you think is the place for tools of thought like APL in a world in which LLMs are
able to answer questions about data?

APL and similar tools of thought remain vital even with LLMs because they provide
precise, reproducible ways to manipulate data that build mathematical intuition. While
LLMs can explain patterns, APL lets users directly express and experiment with
computational ideas in a notation that mirrors mathematical thinking. This hands-on
manipulation and expression of ideas complements rather than competes with LLMs'
explanatory abilities.

The ideal future might combine both - using APL's notation and array-oriented thinking
to clearly specify computations, while using LLMs to explain, teach, and help debug these
expressions. What's your view on how these tools could work together?

[l Copy O Retry b 02

% Claude can make mistakes. Please double-check responses.

49

@ Will you help us Make APL Great Again?

Due to unexpected capacity constraints, Claude is unable to
respond to your message. Please try again soon.

Experimenting with Large Language Models for APL

DYALOC

	Slide 0: Experimenting with Large Language Models for APL
	Slide 1: Neural Networks and Deep Learning in 2024
	Slide 2: April 2023
	Slide 3: June 2024
	Slide 4
	Slide 5: OpenAI GPT 3.5
	Slide 6: OpenAI GPT 3.5
	Slide 7: Claude 3.5 Sonnet
	Slide 8: Claude 3.5 Sonnet
	Slide 9: Claude 3.5 Sonnet
	Slide 10: APL Challenge
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Claude 3.5 Sonnet
	Slide 20: Claude 3.5 Sonnet
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 30
	Slide 31: AI Assistant in Cursor
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Clustering Algorithms
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Convergence Threshold (ε)
	Slide 44: Convergence Threshold (ε)
	Slide 45
	Slide 46: Distance Metric
	Slide 47: Distance Metric
	Slide 48
	Slide 49

