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Coming up ...

A look at what goes inside a workspace
A look at how the workspace is managed
Why?

I’ve been asked for “how it works” presentations

It really affects performance

We’ve made it fast, but sometimes tuning can
help further
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What you are about to see is based on the way Dyalog APL
actually works.

Some dramatic licence has been taken and sequences have
been shortened for simplicity.
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The workspace

A big contiguous block of memory which the
interpreter asks the OS to allocate.
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The workspace

The interpreter manages what is in it.
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The workspace

The interpreter tries to keep the workspace
small.
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The workspace

The workspace shrinks and grows from time
to time, but never gets bigger than MAXWS.
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Workspace allocation

Reserved

T T

addr addr+MAXWS
The interpreter reserves MAXWS bytes in the
computer’s address space to keep the range free.
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Workspace allocation

L Reserved

T Actual workspace T
addr addr+MAXWS

The interpreter reserves MAXWS bytes in the
computer’s address space to keep the range free.
But it initially only allocates a fraction of that.
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What goes into the workspace?

Pretty much everything:
Arrays.
Symbols (names).
Functions.
The APL stack.

... etc.

All of these things are made up of Pockets.
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Pockets

10

In the allocated part of the workspace there are:
FREE POCKETS.
ALLOCATED POCKETS.

... and there lots of types of allocated pocket — but more on that later.
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Pocket allocation algorithm

11

An Introduction to the workspace

DYALOC




Pocket allocation algorithm

12

L)

Starting at the pocket after the previous allocation:
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Pocket allocation algorithm

13

L)

Starting at the pocket after the previous allocation:

If it is free and big enough: allocate at that point, and anything
left over becomes a new free pocket.
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Pocket allocation algorithm

14

L)

Starting at the pocket after the previous allocation:

If it is free and big enough: allocate at that point, and anything
left over becomes a new free pocket.

Otherwise: skip to the next pocket and try again.
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Pocket allocation algorithm
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L)

Starting at the pocket after the previous allocation:

If it is free and big enough: allocate at that point, and anything
left over becomes a new free pocket.

Otherwise: skip to the next pocket and try again.
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Pocket allocation algorithm
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L)

Starting at the pocket after the previous allocation:

If it is free and big enough: allocate at that point, and anything
left over becomes a new free pocket.

Otherwise: skip to the next pocket and try again.
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Pocket allocation algorithm

17

)

Starting at the pocket after the previous allocation:

If it is free and big enough: allocate at that point, and anything
left over becomes a new free pocket.

Otherwise: skip to the next pocket and try again.

Next time, restart from the next pocket.
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Pocket allocation (and deallocation)

]
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Pocket allocation (and deallocation)
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T
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Pocket allocation (and deallocation)
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T
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Pocket allocation (and deallocation)
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Pocket allocation (and deallocation)
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]
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Pocket allocation (and deallocation)
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]
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Pocket allocation (and deallocation)
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Pocket allocation (and deallocation)
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Pocket allocation (and deallocation)
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Pocket allocation (and deallocation)
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Pocket allocation (and deallocation)
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Pocket allocation (and deallocation)
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Pocket allocation (and deallocation)
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Pocket allocation (and deallocation)

31

]

An Introduction to the workspace

DYALOC




Pocket allocation (and deallocation)
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Next allocation request
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Pocket allocation (and deallocation)

34
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Pocket allocation (and deallocation)

]

Allocated!
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Pocket allocation (and deallocation)

36

T

Allocated!
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Pocket allocation (and deallocation)

37

T

Will fit!!
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Pocket allocation (and deallocation)
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Next allocation request
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Pocket allocation (and deallocation)

40

]

Too smalll
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Pocket allocation (and deallocation)

411

]

Allocated!
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Pocket allocation (and deallocation)
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]

Too smalll
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Pocket allocation (and deallocation)
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]

Allocated!
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Pocket allocation (and deallocation)
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]

Allocated!
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Pocket allocation (and deallocation)
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]

Too smalll
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Pocket allocation (and deallocation)
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]

Allocated!
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Pocket allocation (and deallocation)

a7

]

Allocated!
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Pocket allocation (and deallocation)
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]

Allocated!
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Pocket allocation (and deallocation)
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Pocket allocation (and deallocation)

]

Allocated!
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Pocket allocation (and deallocation)
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]

Allocated!
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Pocket allocation (and deallocation)
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]

Allocated!

An Introduction to the workspace

DYALOC




Pocket allocation (and deallocation)
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]

Back at start
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Pocket allocation (and deallocation)

]

Back at start

Space could not be allocated.
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Pocket allocation (and deallocation)

]

Back at start

Space could not be allocated.
Not necessarily a WSFULL... we’ll see what happens next later.
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A look inside some pockets
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Free pockets

57
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Free pockets

L Unused content
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Allocated pockets
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Allocated pockets

L|R|Z Payload

60
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Allocated pockets

1 word long (64-bits).
Includes the main pocket type.
There are 15 major pocket types in all.
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Arrays
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A simple arr

ay

L|R|Z Payload
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A simple array - 18

17)

64

Simple array pocket type.

Rank 1.
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A simple array —

NB - array contains:
L |( z)

12345678
Simple array pocket type.
Rank 1.
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A simple array —

NB - array contains:
L |( z)

12345678
Simple array pocket type.
Rank 1.
8-bit integers.

66 An Introduction to the workspace

DYALOC




A simple array - 18

LR(

D)

e’
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Shape 8.
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A simple array - 18

An Introduction to the workspace

DYALOC




69

A simple array - 18
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A simple array - 18

8 x 8 bits = 1 word
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A simple array - 18
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A simple array - 18

72
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A simple arr

ay

L|R|Z Payload

73
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A simple array -(17),100000

17)

Simple array pocket type.

Rank 1.
32-bit integers.
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A simple array -(17),100000
17)

Simple array pocket type.
Rank 1.

32-bit integers.
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A simple array -(17),100000

LR(

8

)

e’

76

Shape 8.
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A simple array -(17),100000

7

Each element is now 32-bit, rather than 8-bit before.
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A simple array -(17),100000

1
2

3
4

5
6

000000

78

Each element is now 32-bit, rather than 8-bit before.

8 x 32 bits = 4 words.
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A non-simple array: multiple pockets

L|R|Z| Payload L|R|Z Payload
L|R|Z Payload LIR|Z Payload
L|R|Z Payload L|R|Z Payload
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(18)((17),100000)

—_
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(18)((17),100000)

—_
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(18)((17),100000)

—_

{(2)
*

“Non-simple” array pocket type.
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(18)((17),100000)

—_
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(18)((17),100000)

—_
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(18)((17),100000)

—_
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(18)((17),100000)

—_

An Introduction to the workspace

DYALOC




87

Other pocket types
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(18)((17),100000)

—_
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Symbols

\ 4
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Symbols

\ 4
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Code

An Introduction to the workspace

DYALOC




93

Code
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o

‘tot’

A 4
\
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o

‘tot’

A 4
\
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_@—/ ¢a7

{o} 1/| ‘tot’
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Code

|—
0
N
O
ARROW
O
PLUS

o

_@—/ ¢a7

/| ‘tot’
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Code

I_
=S,
N
O
ARROW

PLUS

{o} 1/| ‘tot’
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Stack

An Introduction to the workspace

r<f;a
a<(1 2)(3 4)

r<+/°a
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Stack

r<fsa

a<(1 2)(3 &)

r<+/°a

LIR|Z|P] ... Function “Mode” frame
LIR|Z|P] ... “Shadow” block
v
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Stack

r<fsa

a<(1 2)(3 &)

r<+/°a

LIRIZ|P] ... Each
LIR|Z|P] ... Function “Mode” frame
LIR|Z|P] ... “Shadow” block

v
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Stack

r<fsa

a<(1 2)(3 &)

R[z[p]..] + et/ a
LIR]Z|P] ... Each
L|R|Z P ... | Function “Mode” frame
L|R|Z P “Shadow” block
v
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Stack

r<fsa

a<(1 2)(3 &)

r<+/°a

LIRIZ|P] ... Each
LIR|Z|P] ... Function “Mode” frame
LIR|Z|P] ... “Shadow” block

v
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Stack

r<fsa

a<(1 2)(3 &)

R[z[p]..] + et/ a
LIR]Z|P] ... Each
L|R|Z P ... | Function “Mode” frame
L|R|Z P “Shadow” block
v
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Stack

r<fsa

a<(1 2)(3 &)

r<+/°a

LIR|Z|P] ... Function “Mode” frame
LIR|Z|P] ... “Shadow” block
v
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Stack

r<fsa
a<(1 2)(3 4)

r<+/°a
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Reference counts
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a«(18)((t7),100000)
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a<(18)((17),100000)

rLR28§ 1LIR|Z|8];

—_
W
()
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a<(18)((17),100000)
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|—-L128§

‘b’

—_
W

000000
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—_

‘b’

A 4

An Introduction to the workspace DYALOC




JEX'a"

—_

A 4
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JEX'b'
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‘b’
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v

—_
W

000000
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JEX'b'
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‘b’
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JEX'b'
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‘b’
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a<«2/c18
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a<«2/c18
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a<«2/c18
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a<«2/c18
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a<2/c18

\ 4

120 A I | I |
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a<2/c18

\ 4

\ 4
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a<2/c18

\ 4

\ 4
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Refcounts

Save space.
Make assignment fast.

APL without them would be impractical.
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Refcounts vs optimisations

Pockets with high refcounts cannot be F<f:a
modified. 4< 1100
r<i+g
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Refcounts vs optimisations

Pockets with high refcounts cannot be F<f:a
modified. 2~ 1100
r<i+g
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Refcounts vs optimisations

Pockets with high refcounts cannot be F<f:a

modified. 2~ 1100

r<i+g

1 9 17 25 33 41 49 57 65 73 81 89 97
2 10 18 26 34 42 50 58 66 75 82 90 98
3 1 19 27 35 43 51 59 67 75 83 91 99
1 " L R Z 1 00 4 12 20 28 36 44 52 60 68 76 84 92 100
L 5 13 21 29 37 45 53 61 69 n 85 93
6 14 22 30 38 46 54 62 70 8 86 94
7 15 23 31 39 a7 55 63 7 9 87 95
8 16 24 32 40 48 56 64 72 80 88 9%

126 An Introduction to the workspace

DYALOC




Refcounts vs optimisations

Pockets with high refcounts cannot be F<f:a
modified. 4< 1100

r<i+g

1 9 17 25 33 41 49 57 65 73 81 89 97
2 10 18 26 34 42 50 58 66 75 82 90 98
3 1 19 27 35 43 51 59 67 75 83 91 99
1 " L R Z 1 00 4 12 20 28 36 44 52 60 68 76 84 92 100
L 5 13 21 29 37 45 53 61 69 n 85 93
6 14 22 30 38 46 54 62 70 8 86 94
7 15 23 31 39 a7 55 63 7 9 87 95
8 16 24 32 40 48 56 64 72 80 88 9%
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Refcounts vs optimisations

Pockets with high refcounts cannot be F<f:a
modified. 4< 1100

r<i+g

[
O a 1 9 17 25 33 41 49 57 65 73 81 89 97
2 10 18 26 34 42 50 58 66 75 82 90 98
3 1 19 27 35 43 51 59 67 75 83 91 99
1 " L R Z 1 00 4 12 20 28 36 44 52 60 68 76 84 92 100
L 5 13 21 29 37 45 53 61 69 n 85 93 -
6 14 22 30 38 46 54 62 70 8 86 94 -
7 15 23 31 39 a7 55 63 7 9 87 95 -
8 16 24 32 40 48 56 64 72 80 88 9% -
(398}
O r 2 10 18 26 34 42 50 58 66 74 82 90 98
3 11 19 27 35 43 51 59 67 75 83 91 99
4 12 20 28 36 44 52 60 68 76 84 92 100
L B 5 13 21 29 37 45 53 61 69 77 85 93 101
» 100 6 14 22 30 38 46 54 62 70 78 86 94 -
7 15 23 31 39 47 55 63 7 79 87 95 -
8 16 24 32 40 48 56 64 kel 80 88 96 -
9 17 25 33 41 49 57 65 73 81 89 97 -
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Refcounts vs optimisations

Pockets with low refcounts can be modified. r<f;a
a<1100
r<i+a
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Refcounts vs optimisations

130

Pockets with low refcounts can be modified.
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r<1+1100
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Refcounts vs optimisations
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Pockets with low refcounts can be modified.
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r<f

r<1+1100
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Refcounts vs optimisations
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Pockets with low refcounts can be modified.

r<f

r<1+1100

1 9 17 25 33 41 49 57 65 73 81 89 97

2 10 18 26 34 42 50 58 66 75 82 90 98

3 1 19 27 35 43 51 59 67 75 83 91 99
L R Z 1 00 4 12 20 28 36 44 52 60 68 76 84 92 100

5 13 21 29 37 45 53 61 69 n 85 93

6 14 22 30 38 46 54 62 70 8 86 94

7 15 23 31 39 a7 55 63 7 9 87 95

8 16 24 32 40 48 56 64 72 80 88 9%
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Refcounts vs optimisations

Pockets with low refcounts can be modified.

r<f

r<1+1100

2 10 18 26 34 42 50 58 66 74 82 90 98
3 1 19 27 35 43 51 59 67 75 83 91 99
4 12 20 28 36 44 52 60 68 76 84 92 100
| I L R Z 100 5 13 21 29 37 45 53 61 69 n 85 93 101
L 6 14 22 30 38 46 54 62 70 8 86 94
7 15 23 31 39 a7 55 63 7 9 87 95
8 16 24 32 40 48 56 64 72 80 88 9%
9 17 25 33 a1 A
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Refcounts vs optimisations

Pockets with low refcounts can be modified. r<f

r<1+1100

2 10 18 26 34 42 50 58 66 74 82 90 98
3 1 19 27 35 43 51 59 67 75 83 91 99
4 12 20 28 36 44 52 60 68 76 84 92 100
| I L R Z 100 5 13 21 29 37 45 53 61 69 n 85 93 101
L 6 14 22 30 38 46 54 62 70 8 86 94
7 15 23 31 39 a7 55 63 7 9 87 95
8 16 24 32 40 48 56 64 72 80 88 9%
9 17 25 33 a1 A

20% faster!
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Refcounts vs optimisations

Pockets with low refcounts can be modified. r<f

r<1+1100

2 10 18 26 34 42 50 58 66 74 82 90 98
3 1 19 27 35 43 51 59 67 75 83 91 99
4 12 20 28 36 44 52 60 68 76 84 92 100
| I L R Z 100 5 13 21 29 37 45 53 61 69 n 85 93 101
L 6 14 22 30 38 46 54 62 70 8 86 94
7 15 23 31 39 a7 55 63 7 9 87 95
8 16 24 32 40 48 56 64 72 80 88 9%
9 17 25 33 a1 A

20% faster!
Only possible when refcount is low!
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Garbage

Garbage occurs when there are
“reference loops”

The only thing that references the pockets in
the loop is the pockets in the loop

Traditional APL does not create garbage
but OO features can.

Why, and how it is removed, is a whole
other presentation!
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Pocket allocation (and deallocation)

]

Back at start

Space could not be allocated.

Not necessarily a WSFULL... we’ll see what happens next later.
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Pocket compression (“squeeze”)

]

Back at start
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Pocket compression
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Pocket compression
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Pocket compression

17

141

Simple array.
Rank 1.
64-bit doubles.
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Pocket compression

Simple array.
Rank 1.
64-bit doubles.
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Pocket compression

Simple array.
Rank 1.
64-bit doubles.
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Pocket compression

LIR|Z

33

144

Simple array.
Rank 1.
64-bit doubles.
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Pocket compression

LIR|Z

33

145

Simple array.
Rank 1.
64-bit doubles.
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Pocket compression

LIR|Z

2 2 8 1

1 2 2 3

8 5 3 4
33 9 a4 2

146

Simple array.
Rank 1.
8-bit ints.
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Pocket compression
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Pocket compression
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Pocket compression

149 An Introduction to the workspace DYALOC




Pocket compression
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Pocket compression
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Workspace compaction
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Workspace compaction

]
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Workspace compaction

T
T
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The allocation request
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Pocket allocation (and deallocation)

T
T
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Pocket allocation (and deallocation)

]
T
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Pocket allocation (and deallocation)

]
T
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Pocket allocation (and deallocation)

]
T
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Next allocation request

160 An Introduction to the workspace DYALOC




Walk workspace

]
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Walk workspace

T
T
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Walk workspace

]
T
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Walk workspace

T
T
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Walk workspace

]
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Walk workspace

]
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Walk workspace

]
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Walk workspace

]

No room.
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Compress and compact

]
]
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Compress and compact
]
(]

Still no room.
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Worspace expansion

t
t
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Worspace expansion

t
t
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Worspace expansion

()
t
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Pocket allocation algorithm

Incredibly simple.
Very fast.

Every new interpreter developer thinks they
can improve it.

No-one has so far.
In 18.0 we almost did...
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Reducing workspace allocation

OWA

Performs compression and compaction.

Resets to an “ideal” memory allocation.
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Useful tools

20001

176

Number of free and allocated pockets.
Number of compactions.

Sediment size.
Current allocation and allocation HWM.

Set min/max allocation sizes.
[OWA without compaction etc.
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Useful tools

20021

WA which allows the WS allocation to
be specified.
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Why 2000 ?
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QUD MMz 7




QUD MMz 7

MMI
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QUD MMz 7

MEMORY MANAGER




The workspace

183

Everything in it is a pocket.
Pockets are refcounted.
Pockets are allocated using a “rotating first fit” algorithm.

Workspace is compressed and compacted only when space cannot be
allocated.

The workspace allocation increases only when compression and
compaction don’t help.

You can monitor when this happens and have some control over it.
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Questions?
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