DOYALOC

An introduction to the
workspace

Richard Smith

Coming up ...

A look at what goes inside a workspace
A look at how the workspace is managed
Why?

I’ve been asked for “how it works” presentations

It really affects performance

We’ve made it fast, but sometimes tuning can
help further

An Introduction to the workspace

DYALOC

What you are about to see is based on the way Dyalog APL
actually works.

Some dramatic licence has been taken and sequences have
been shortened for simplicity.

An Introduction to the workspace DYALOC

The workspace

A big contiguous block of memory which the
interpreter asks the OS to allocate.

An Introduction to the workspace DYALOC

The workspace

The interpreter manages what is in it.

An Introduction to the workspace DYALOC

The workspace

The interpreter tries to keep the workspace
small.

An Introduction to the workspace DYALOC

The workspace

The workspace shrinks and grows from time
to time, but never gets bigger than MAXWS.

An Introduction to the workspace DYALOC

Workspace allocation

Reserved

T T

addr addr+MAXWS
The interpreter reserves MAXWS bytes in the
computer’s address space to keep the range free.

7 An Introduction to the workspace DYALOC

Workspace allocation

L Reserved

T Actual workspace T
addr addr+MAXWS

The interpreter reserves MAXWS bytes in the
computer’s address space to keep the range free.
But it initially only allocates a fraction of that.

8 An Introduction to the workspace DYALOC

What goes into the workspace?

Pretty much everything:
Arrays.
Symbols (names).
Functions.
The APL stack.

... etc.

All of these things are made up of Pockets.

An Introduction to the workspace DYALOC

Pockets

10

In the allocated part of the workspace there are:
FREE POCKETS.
ALLOCATED POCKETS.

... and there lots of types of allocated pocket — but more on that later.

An Introduction to the workspace DYALOC

Pocket allocation algorithm

11

An Introduction to the workspace

DYALOC

Pocket allocation algorithm

12

L)

Starting at the pocket after the previous allocation:

An Introduction to the workspace

DYALOC

Pocket allocation algorithm

13

L)

Starting at the pocket after the previous allocation:

If it is free and big enough: allocate at that point, and anything
left over becomes a new free pocket.

An Introduction to the workspace DYALOC

Pocket allocation algorithm

14

L)

Starting at the pocket after the previous allocation:

If it is free and big enough: allocate at that point, and anything
left over becomes a new free pocket.

Otherwise: skip to the next pocket and try again.

An Introduction to the workspace DYALOC

Pocket allocation algorithm

15

L)

Starting at the pocket after the previous allocation:

If it is free and big enough: allocate at that point, and anything
left over becomes a new free pocket.

Otherwise: skip to the next pocket and try again.

An Introduction to the workspace DYALOC

Pocket allocation algorithm

16

L)

Starting at the pocket after the previous allocation:

If it is free and big enough: allocate at that point, and anything
left over becomes a new free pocket.

Otherwise: skip to the next pocket and try again.

An Introduction to the workspace DYALOC

Pocket allocation algorithm

17

)

Starting at the pocket after the previous allocation:

If it is free and big enough: allocate at that point, and anything
left over becomes a new free pocket.

Otherwise: skip to the next pocket and try again.

Next time, restart from the next pocket.

An Introduction to the workspace DYALOC

Pocket allocation (and deallocation)

]

18

An Introduction to the workspace

DYALOC

Pocket allocation (and deallocation)

19

T

An Introduction to the workspace

DYALOC

Pocket allocation (and deallocation)

20

T

An Introduction to the workspace

DYALOC

Pocket allocation (and deallocation)

21

]

An Introduction to the workspace

DYALOC

Pocket allocation (and deallocation)

22

]

An Introduction to the workspace

DYALOC

Pocket allocation (and deallocation)

23

]

An Introduction to the workspace

DYALOC

Pocket allocation (and deallocation)

24

]

An Introduction to the workspace

DYALOC

Pocket allocation (and deallocation)

25

T

An Introduction to the workspace

DYALOC

Pocket allocation (and deallocation)

26

T

An Introduction to the workspace

DYALOC

Pocket allocation (and deallocation)

27

T

An Introduction to the workspace

DYALOC

Pocket allocation (and deallocation)

28

]

An Introduction to the workspace

DYALOC

Pocket allocation (and deallocation)

29

]

An Introduction to the workspace

DYALOC

Pocket allocation (and deallocation)

30

]

An Introduction to the workspace

DYALOC

Pocket allocation (and deallocation)

31

]

An Introduction to the workspace

DYALOC

Pocket allocation (and deallocation)

32

An Introduction to the workspace

T

DYALOC

33

Next allocation request

An Introduction to the workspace

DYALOC

Pocket allocation (and deallocation)

34

An Introduction to the workspace

T

Too smalll

DYALOC

Pocket allocation (and deallocation)

]

Allocated!

35 An Introduction to the workspace DYALOC

Pocket allocation (and deallocation)

36

T

Allocated!

An Introduction to the workspace

DYALOC

Pocket allocation (and deallocation)

37

T

Will fit!!

An Introduction to the workspace

DYALOC

Pocket allocation (and deallocation)

38

]

An Introduction to the workspace

DYALOC

39

Next allocation request

An Introduction to the workspace

DYALOC

Pocket allocation (and deallocation)

40

]

Too smalll

An Introduction to the workspace

DYALOC

Pocket allocation (and deallocation)

411

]

Allocated!

An Introduction to the workspace

DYALOC

Pocket allocation (and deallocation)

42

]

Too smalll

An Introduction to the workspace

DYALOC

Pocket allocation (and deallocation)

43

]

Allocated!

An Introduction to the workspace

DYALOC

Pocket allocation (and deallocation)

44

]

Allocated!

An Introduction to the workspace

DYALOC

Pocket allocation (and deallocation)

45

]

Too smalll

An Introduction to the workspace

DYALOC

Pocket allocation (and deallocation)

46

]

Allocated!

An Introduction to the workspace

DYALOC

Pocket allocation (and deallocation)

a7

]

Allocated!

An Introduction to the workspace

DYALOC

Pocket allocation (and deallocation)

48

]

Allocated!

An Introduction to the workspace

DYALOC

Pocket allocation (and deallocation)

49

An Introduction to the workspace

T

Too smalll

DYALOC

Pocket allocation (and deallocation)

]

Allocated!

50 An Introduction to the workspace DYALOC

Pocket allocation (and deallocation)

51

]

Allocated!

An Introduction to the workspace

DYALOC

Pocket allocation (and deallocation)

52

]

Allocated!

An Introduction to the workspace

DYALOC

Pocket allocation (and deallocation)

53

]

Back at start

An Introduction to the workspace

DYALOC

Pocket allocation (and deallocation)

]

Back at start

Space could not be allocated.

54

An Introduction to the workspace

DYALOC

Pocket allocation (and deallocation)

]

Back at start

Space could not be allocated.
Not necessarily a WSFULL... we’ll see what happens next later.

55 An Introduction to the workspace

DYALOC

56

A look inside some pockets

An Introduction to the workspace DYALOC

Free pockets

57

An Introduction to the workspace

DYALOC

Free pockets

L Unused content

58

An Introduction to the workspace

DYALOC

Allocated pockets

59

An Introduction to the workspace

DYALOC

Allocated pockets

L|R|Z Payload

60

An Introduction to the workspace

DYALOC

61

Allocated pockets

1 word long (64-bits).
Includes the main pocket type.
There are 15 major pocket types in all.

An Introduction to the workspace

DYALOC

62

Arrays

An Introduction to the workspace

DYALOC

A simple arr

ay

L|R|Z Payload

63

An Introduction to the workspace

DYALOC

A simple array - 18

17)

64

Simple array pocket type.

Rank 1.

An Introduction to the workspace

DYALOC

A simple array —

NB - array contains:
L |(z)

12345678
Simple array pocket type.
Rank 1.

65 An Introduction to the workspace

DYALOC

A simple array —

NB - array contains:
L |(z)

12345678
Simple array pocket type.
Rank 1.
8-bit integers.

66 An Introduction to the workspace

DYALOC

A simple array - 18

LR(

D)

e’

67

Shape 8.

An Introduction to the workspace

DYALOC

68

A simple array - 18

An Introduction to the workspace

DYALOC

69

A simple array - 18

An Introduction to the workspace

DYALOC

70

A simple array - 18

8 x 8 bits = 1 word

An Introduction to the workspace

DYALOC

71

A simple array - 18

An Introduction to the workspace

DYALOC

A simple array - 18

72

An Introduction to the workspace

DYALOC

A simple arr

ay

L|R|Z Payload

73

An Introduction to the workspace

DYALOC

74

A simple array -(17),100000

17)

Simple array pocket type.

Rank 1.
32-bit integers.

An Introduction to the workspace

DYALOC

A simple array -(17),100000
17)

Simple array pocket type.
Rank 1.

32-bit integers.

An Introduction to the workspace DYALOC

A simple array -(17),100000

LR(

8

)

e’

76

Shape 8.

An Introduction to the workspace

DYALOC

A simple array -(17),100000

7

Each element is now 32-bit, rather than 8-bit before.

An Introduction to the workspace

DYALOC

A simple array -(17),100000

1
2

3
4

5
6

000000

78

Each element is now 32-bit, rather than 8-bit before.

8 x 32 bits = 4 words.

An Introduction to the workspace

DYALOC

A non-simple array: multiple pockets

L|R|Z| Payload L|R|Z Payload
L|R|Z Payload LIR|Z Payload
L|R|Z Payload L|R|Z Payload

An Introduction to the workspace DYALOC

80

(18)((17),100000)

—_

An Introduction to the workspace

DYALOC

81

(18)((17),100000)

—_

An Introduction to the workspace

DYALOC

(18)((17),100000)

—_

{(2)
*

“Non-simple” array pocket type.

An Introduction to the workspace DYALOC

83

(18)((17),100000)

—_

An Introduction to the workspace

DYALOC

84

(18)((17),100000)

—_

An Introduction to the workspace

DYALOC

85

(18)((17),100000)

—_

An Introduction to the workspace

DYALOC

86

(18)((17),100000)

—_

An Introduction to the workspace

DYALOC

87

Other pocket types

An Introduction to the workspace

DYALOC

88

(18)((17),100000)

—_

An Introduction to the workspace

DYALOC

89

An Introduction to the workspace

v

—_
W

000000

DYALOC

90

Symbols

\ 4

An Introduction to the workspace

v

—_
W

000000

DYALOC

91

Symbols

\ 4

An Introduction to the workspace

v

—_
W

000000

DYALOC

92

Code

An Introduction to the workspace

DYALOC

93

Code

An Introduction to the workspace

DYALOC

94

o

‘tot’

A 4
\

An Introduction to the workspace

DYALOC

95

o

‘tot’

A 4
\

An Introduction to the workspace

DYALOC

96

_@—/ ¢a7

{o} 1/| ‘tot’

An Introduction to the workspace

DYALOC

97

Code

|—
0
N
O
ARROW
O
PLUS

o

_@—/ ¢a7

/| ‘tot’

An Introduction to the workspace

DYALOC

98

Code

I_
=S,
N
O
ARROW

PLUS

{o} 1/| ‘tot’

An Introduction to the workspace

DYALOC

99

Stack

An Introduction to the workspace

r<f;a
a<(1 2)(3 4)

r<+/°a

DYALOC

Stack

r<fsa

a<(1 2)(3 &)

r<+/°a

LIR|Z|P] ... Function “Mode” frame
LIR|Z|P] ... “Shadow” block
v

100 An Introduction to the workspace DYALOC

Stack

r<fsa

a<(1 2)(3 &)

r<+/°a

LIRIZ|P] ... Each
LIR|Z|P] ... Function “Mode” frame
LIR|Z|P] ... “Shadow” block

v

101 An Introduction to the workspace DYALOC

Stack

r<fsa

a<(1 2)(3 &)

R[z[p]..] + et/ a
LIR]Z|P] ... Each
L|R|Z P ... | Function “Mode” frame
L|R|Z P “Shadow” block
v

102 An Introduction to the workspace DYALOC

Stack

r<fsa

a<(1 2)(3 &)

r<+/°a

LIRIZ|P] ... Each
LIR|Z|P] ... Function “Mode” frame
LIR|Z|P] ... “Shadow” block

v

103 An Introduction to the workspace DYALOC

Stack

r<fsa

a<(1 2)(3 &)

R[z[p]..] + et/ a
LIR]Z|P] ... Each
L|R|Z P ... | Function “Mode” frame
L|R|Z P “Shadow” block
v

104 An Introduction to the workspace DYALOC

Stack

r<fsa

a<(1 2)(3 &)

r<+/°a

LIR|Z|P] ... Function “Mode” frame
LIR|Z|P] ... “Shadow” block
v

105 An Introduction to the workspace DYALOC

Stack

r<fsa
a<(1 2)(3 4)

r<+/°a

106 An Introduction to the workspace DYALOC

Reference counts

107 An Introduction to the workspace DYALOC

a«(18)((t7),100000)

108 An Introduction to the workspace DYALOC

a<(18)((17),100000)

rLR28§ 1LIR|Z|8];

—_
W
()

109 An Introduction to the workspace DYALOC

a<(18)((17),100000)

110

|—-L128§

‘b’

—_
W

000000

An Introduction to the workspace

DYALOC

111

—_

‘b’

A 4

An Introduction to the workspace DYALOC

JEX'a"

—_

A 4

112 An Introduction to the workspace DYALOC

JEX'b'

113

‘b’

An Introduction to the workspace

v

—_
W

000000

DYALOC

JEX'b'

114

‘b’

An Introduction to the workspace

—_
W

000000

DYALOC

JEX'b'

115

‘b’

An Introduction to the workspace

DYALOC

a<«2/c18

116 An Introduction to the workspace DYALOC

a<«2/c18

117 An Introduction to the workspace DYALOC

a<«2/c18

118 An Introduction to the workspace DYALOC

a<«2/c18

119 An Introduction to the workspace DYALOC

a<2/c18

\ 4

120 A I | I |
I*l

a<2/c18

\ 4

\ 4

121
An Introduction to the w
orkspace
DYALOC

a<2/c18

\ 4

\ 4

122
An Introduction to the w
orkspace
DYALOC

Refcounts

Save space.
Make assignment fast.

APL without them would be impractical.

123 An Introduction to the workspace DYALOC

Refcounts vs optimisations

Pockets with high refcounts cannot be F<f:a
modified. 4< 1100
r<i+g

124 An Introduction to the workspace DYALOC

Refcounts vs optimisations

Pockets with high refcounts cannot be F<f:a
modified. 2~ 1100
r<i+g

125 An Introduction to the workspace DYALOC

Refcounts vs optimisations

Pockets with high refcounts cannot be F<f:a

modified. 2~ 1100

r<i+g

1 9 17 25 33 41 49 57 65 73 81 89 97
2 10 18 26 34 42 50 58 66 75 82 90 98
3 1 19 27 35 43 51 59 67 75 83 91 99
1 " L R Z 1 00 4 12 20 28 36 44 52 60 68 76 84 92 100
L 5 13 21 29 37 45 53 61 69 n 85 93
6 14 22 30 38 46 54 62 70 8 86 94
7 15 23 31 39 a7 55 63 7 9 87 95
8 16 24 32 40 48 56 64 72 80 88 9%

126 An Introduction to the workspace

DYALOC

Refcounts vs optimisations

Pockets with high refcounts cannot be F<f:a
modified. 4< 1100

r<i+g

1 9 17 25 33 41 49 57 65 73 81 89 97
2 10 18 26 34 42 50 58 66 75 82 90 98
3 1 19 27 35 43 51 59 67 75 83 91 99
1 " L R Z 1 00 4 12 20 28 36 44 52 60 68 76 84 92 100
L 5 13 21 29 37 45 53 61 69 n 85 93
6 14 22 30 38 46 54 62 70 8 86 94
7 15 23 31 39 a7 55 63 7 9 87 95
8 16 24 32 40 48 56 64 72 80 88 9%

127 An Introduction to the workspace

DYALOC

Refcounts vs optimisations

Pockets with high refcounts cannot be F<f:a
modified. 4< 1100

r<i+g

[
O a 1 9 17 25 33 41 49 57 65 73 81 89 97
2 10 18 26 34 42 50 58 66 75 82 90 98
3 1 19 27 35 43 51 59 67 75 83 91 99
1 " L R Z 1 00 4 12 20 28 36 44 52 60 68 76 84 92 100
L 5 13 21 29 37 45 53 61 69 n 85 93 -
6 14 22 30 38 46 54 62 70 8 86 94 -
7 15 23 31 39 a7 55 63 7 9 87 95 -
8 16 24 32 40 48 56 64 72 80 88 9% -
(398}
O r 2 10 18 26 34 42 50 58 66 74 82 90 98
3 11 19 27 35 43 51 59 67 75 83 91 99
4 12 20 28 36 44 52 60 68 76 84 92 100
L B 5 13 21 29 37 45 53 61 69 77 85 93 101
» 100 6 14 22 30 38 46 54 62 70 78 86 94 -
7 15 23 31 39 47 55 63 7 79 87 95 -
8 16 24 32 40 48 56 64 kel 80 88 96 -
9 17 25 33 41 49 57 65 73 81 89 97 -

128 An Introduction to the workspace

DYALOC

Refcounts vs optimisations

Pockets with low refcounts can be modified. r<f;a
a<1100
r<i+a

129 An Introduction to the workspace DYALOC

Refcounts vs optimisations

130

Pockets with low refcounts can be modified.

An Introduction to the workspace

r<f

r<1+1100

DYALOC

Refcounts vs optimisations

131

Pockets with low refcounts can be modified.

An Introduction to the workspace

r<f

r<1+1100

DYALOC

Refcounts vs optimisations

132

Pockets with low refcounts can be modified.

r<f

r<1+1100

1 9 17 25 33 41 49 57 65 73 81 89 97

2 10 18 26 34 42 50 58 66 75 82 90 98

3 1 19 27 35 43 51 59 67 75 83 91 99
L R Z 1 00 4 12 20 28 36 44 52 60 68 76 84 92 100

5 13 21 29 37 45 53 61 69 n 85 93

6 14 22 30 38 46 54 62 70 8 86 94

7 15 23 31 39 a7 55 63 7 9 87 95

8 16 24 32 40 48 56 64 72 80 88 9%

An Introduction to the workspace

DYALOC

Refcounts vs optimisations

Pockets with low refcounts can be modified.

r<f

r<1+1100

2 10 18 26 34 42 50 58 66 74 82 90 98
3 1 19 27 35 43 51 59 67 75 83 91 99
4 12 20 28 36 44 52 60 68 76 84 92 100
| I L R Z 100 5 13 21 29 37 45 53 61 69 n 85 93 101
L 6 14 22 30 38 46 54 62 70 8 86 94
7 15 23 31 39 a7 55 63 7 9 87 95
8 16 24 32 40 48 56 64 72 80 88 9%
9 17 25 33 a1 A

133 An Introduction to the workspace

DYALOC

Refcounts vs optimisations

Pockets with low refcounts can be modified. r<f

r<1+1100

2 10 18 26 34 42 50 58 66 74 82 90 98
3 1 19 27 35 43 51 59 67 75 83 91 99
4 12 20 28 36 44 52 60 68 76 84 92 100
| I L R Z 100 5 13 21 29 37 45 53 61 69 n 85 93 101
L 6 14 22 30 38 46 54 62 70 8 86 94
7 15 23 31 39 a7 55 63 7 9 87 95
8 16 24 32 40 48 56 64 72 80 88 9%
9 17 25 33 a1 A

20% faster!

134 An Introduction to the workspace DYALOC

Refcounts vs optimisations

Pockets with low refcounts can be modified. r<f

r<1+1100

2 10 18 26 34 42 50 58 66 74 82 90 98
3 1 19 27 35 43 51 59 67 75 83 91 99
4 12 20 28 36 44 52 60 68 76 84 92 100
| I L R Z 100 5 13 21 29 37 45 53 61 69 n 85 93 101
L 6 14 22 30 38 46 54 62 70 8 86 94
7 15 23 31 39 a7 55 63 7 9 87 95
8 16 24 32 40 48 56 64 72 80 88 9%
9 17 25 33 a1 A

20% faster!
Only possible when refcount is low!

135 An Introduction to the workspace DYALOC

Garbage

Garbage occurs when there are
“reference loops”

The only thing that references the pockets in
the loop is the pockets in the loop

Traditional APL does not create garbage
but OO features can.

Why, and how it is removed, is a whole
other presentation!

136 An Introduction to the workspace

DYALOC

Pocket allocation (and deallocation)

]

Back at start

Space could not be allocated.

Not necessarily a WSFULL... we’ll see what happens next later.

137 An Introduction to the workspace DYALOC

Pocket compression (“squeeze”)

]

Back at start

138 An Introduction to the workspace DYALOC

Pocket compression

139 An Introduction to the workspace DYALOC

Pocket compression

140 An Introduction to the workspace DYALOC

Pocket compression

17

141

Simple array.
Rank 1.
64-bit doubles.

An Introduction to the workspace

DYALOC

Pocket compression

Simple array.
Rank 1.
64-bit doubles.

142 An Introduction to the workspace DYALOC

Pocket compression

Simple array.
Rank 1.
64-bit doubles.

143 An Introduction to the workspace DYALOC

Pocket compression

LIR|Z

33

144

Simple array.
Rank 1.
64-bit doubles.

An Introduction to the workspace

DYALOC

Pocket compression

LIR|Z

33

145

Simple array.
Rank 1.
64-bit doubles.

An Introduction to the workspace

DYALOC

Pocket compression

LIR|Z

2 2 8 1

1 2 2 3

8 5 3 4
33 9 a4 2

146

Simple array.
Rank 1.
8-bit ints.

An Introduction to the workspace

DYALOC

Pocket compression

147 An Introduction to the workspace DYALOC

Pocket compression

148 An Introduction to the workspace DYALOC

Pocket compression

149 An Introduction to the workspace DYALOC

Pocket compression

150 An Introduction to the workspace DYALOC

Pocket compression

151 An Introduction to the workspace DYALOC

Workspace compaction

152 An Introduction to the workspace DYALOC

Workspace compaction

]

153 An Introduction to the workspace DYALOC

Workspace compaction

T
T

154 An Introduction to the workspace DYALOC

The allocation request

155 An Introduction to the workspace DYALOC

Pocket allocation (and deallocation)

T
T

156 An Introduction to the workspace DYALOC

Pocket allocation (and deallocation)

]
T

157 An Introduction to the workspace DYALOC

Pocket allocation (and deallocation)

]
T

158 An Introduction to the workspace DYALOC

Pocket allocation (and deallocation)

]
T

159 An Introduction to the workspace DYALOC

Next allocation request

160 An Introduction to the workspace DYALOC

Walk workspace

]

161 An Introduction to the workspace DYALOC

Walk workspace

T
T

162 An Introduction to the workspace DYALOC

Walk workspace

]
T

163 An Introduction to the workspace DYALOC

Walk workspace

T
T

164 An Introduction to the workspace DYALOC

Walk workspace

]

165 An Introduction to the workspace DYALOC

Walk workspace

]

166 An Introduction to the workspace DYALOC

Walk workspace

]

167 An Introduction to the workspace DYALOC

Walk workspace

]

No room.

168 An Introduction to the workspace DYALOC

Compress and compact

]
]

169 An Introduction to the workspace DYALOC

Compress and compact
]
(]

Still no room.

170 An Introduction to the workspace DYALOC

Worspace expansion

t
t

171 An Introduction to the workspace DYALOC

Worspace expansion

t
t

172 An Introduction to the workspace DYALOC

Worspace expansion

()
t

173 An Introduction to the workspace DYALOC

Pocket allocation algorithm

Incredibly simple.
Very fast.

Every new interpreter developer thinks they
can improve it.

No-one has so far.
In 18.0 we almost did...

174 An Introduction to the workspace DYALOC

Reducing workspace allocation

OWA

Performs compression and compaction.

Resets to an “ideal” memory allocation.

175 An Introduction to the workspace DYALOC

Useful tools

20001

176

Number of free and allocated pockets.
Number of compactions.

Sediment size.
Current allocation and allocation HWM.

Set min/max allocation sizes.
[OWA without compaction etc.

An Introduction to the workspace

DYALOC

Useful tools

20021

WA which allows the WS allocation to
be specified.

177 An Introduction to the workspace DYALOC

Why 2000 ?

178 An Introduction to the workspace DYALOC

QUD MMz 7

QUD MMz 7

MMI

QUD MMz 7

QUD MMz 7

MEMORY MANAGER

The workspace

183

Everything in it is a pocket.
Pockets are refcounted.
Pockets are allocated using a “rotating first fit” algorithm.

Workspace is compressed and compacted only when space cannot be
allocated.

The workspace allocation increases only when compression and
compaction don’t help.

You can monitor when this happens and have some control over it.

An Introduction to the workspace DYALOC

Questions?

184 An Introduction to the workspace DYALOC

	Slide 0: An introduction to the workspace
	Slide 1: Coming up …
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Workspace allocation
	Slide 8: Workspace allocation
	Slide 9: What goes into the workspace?
	Slide 10: Pockets
	Slide 11: Pocket allocation algorithm
	Slide 12: Pocket allocation algorithm
	Slide 13: Pocket allocation algorithm
	Slide 14: Pocket allocation algorithm
	Slide 15: Pocket allocation algorithm
	Slide 16: Pocket allocation algorithm
	Slide 17: Pocket allocation algorithm
	Slide 18: Pocket allocation (and deallocation)
	Slide 19: Pocket allocation (and deallocation)
	Slide 20: Pocket allocation (and deallocation)
	Slide 21: Pocket allocation (and deallocation)
	Slide 22: Pocket allocation (and deallocation)
	Slide 23: Pocket allocation (and deallocation)
	Slide 24: Pocket allocation (and deallocation)
	Slide 25: Pocket allocation (and deallocation)
	Slide 26: Pocket allocation (and deallocation)
	Slide 27: Pocket allocation (and deallocation)
	Slide 28: Pocket allocation (and deallocation)
	Slide 29: Pocket allocation (and deallocation)
	Slide 30: Pocket allocation (and deallocation)
	Slide 31: Pocket allocation (and deallocation)
	Slide 32: Pocket allocation (and deallocation)
	Slide 33: Next allocation request
	Slide 34: Pocket allocation (and deallocation)
	Slide 35: Pocket allocation (and deallocation)
	Slide 36: Pocket allocation (and deallocation)
	Slide 37: Pocket allocation (and deallocation)
	Slide 38: Pocket allocation (and deallocation)
	Slide 39: Next allocation request
	Slide 40: Pocket allocation (and deallocation)
	Slide 41: Pocket allocation (and deallocation)
	Slide 42: Pocket allocation (and deallocation)
	Slide 43: Pocket allocation (and deallocation)
	Slide 44: Pocket allocation (and deallocation)
	Slide 45: Pocket allocation (and deallocation)
	Slide 46: Pocket allocation (and deallocation)
	Slide 47: Pocket allocation (and deallocation)
	Slide 48: Pocket allocation (and deallocation)
	Slide 49: Pocket allocation (and deallocation)
	Slide 50: Pocket allocation (and deallocation)
	Slide 51: Pocket allocation (and deallocation)
	Slide 52: Pocket allocation (and deallocation)
	Slide 53: Pocket allocation (and deallocation)
	Slide 54: Pocket allocation (and deallocation)
	Slide 55: Pocket allocation (and deallocation)
	Slide 56
	Slide 57: Free pockets
	Slide 58: Free pockets
	Slide 59: Allocated pockets
	Slide 60: Allocated pockets
	Slide 61: Allocated pockets
	Slide 62
	Slide 63: A simple array
	Slide 64: A simple array - ⍳8
	Slide 65: A simple array - ⍳8
	Slide 66: A simple array - ⍳8
	Slide 67: A simple array - ⍳8
	Slide 68: A simple array - ⍳8
	Slide 69: A simple array - ⍳8
	Slide 70: A simple array - ⍳8
	Slide 71: A simple array - ⍳8
	Slide 72: A simple array - ⍳8
	Slide 73: A simple array
	Slide 74: A simple array –(⍳7),100000
	Slide 75: A simple array –(⍳7),100000
	Slide 76: A simple array –(⍳7),100000
	Slide 77: A simple array –(⍳7),100000
	Slide 78: A simple array –(⍳7),100000
	Slide 79: A non-simple array: multiple pockets
	Slide 80: (⍳8)((⍳7),100000)
	Slide 81: (⍳8)((⍳7),100000)
	Slide 82: (⍳8)((⍳7),100000)
	Slide 83: (⍳8)((⍳7),100000)
	Slide 84: (⍳8)((⍳7),100000)
	Slide 85: (⍳8)((⍳7),100000)
	Slide 86: (⍳8)((⍳7),100000)
	Slide 87
	Slide 88: (⍳8)((⍳7),100000)
	Slide 89
	Slide 90: Symbols
	Slide 91: Symbols
	Slide 92: Code
	Slide 93: Code
	Slide 94: Code
	Slide 95: Code
	Slide 96: Code
	Slide 97: Code
	Slide 98: Code
	Slide 99: Stack
	Slide 100: Stack
	Slide 101: Stack
	Slide 102: Stack
	Slide 103: Stack
	Slide 104: Stack
	Slide 105: Stack
	Slide 106: Stack
	Slide 107
	Slide 108: a←(⍳8)((⍳7),100000)
	Slide 109: a←(⍳8)((⍳7),100000)
	Slide 110: a←(⍳8)((⍳7),100000)
	Slide 111: b←a
	Slide 112: ⎕EX'a'
	Slide 113: ⎕EX'b'
	Slide 114: ⎕EX'b'
	Slide 115: ⎕EX'b'
	Slide 116: a←2/⊂⍳8
	Slide 117: a←2/⊂⍳8
	Slide 118: a←2/⊂⍳8
	Slide 119: a←2/⊂⍳8
	Slide 120: a←2/⊂⍳8
	Slide 121: a←2/⊂⍳8
	Slide 122: a←2/⊂⍳8
	Slide 123: Refcounts
	Slide 124: Refcounts vs optimisations
	Slide 125: Refcounts vs optimisations
	Slide 126: Refcounts vs optimisations
	Slide 127: Refcounts vs optimisations
	Slide 128: Refcounts vs optimisations
	Slide 129: Refcounts vs optimisations
	Slide 130: Refcounts vs optimisations
	Slide 131: Refcounts vs optimisations
	Slide 132: Refcounts vs optimisations
	Slide 133: Refcounts vs optimisations
	Slide 134: Refcounts vs optimisations
	Slide 135: Refcounts vs optimisations
	Slide 136: Garbage
	Slide 137: Pocket allocation (and deallocation)
	Slide 138: Pocket compression (“squeeze”)
	Slide 139: Pocket compression
	Slide 140: Pocket compression
	Slide 141: Pocket compression
	Slide 142: Pocket compression
	Slide 143: Pocket compression
	Slide 144: Pocket compression
	Slide 145: Pocket compression
	Slide 146: Pocket compression
	Slide 147: Pocket compression
	Slide 148: Pocket compression
	Slide 149: Pocket compression
	Slide 150: Pocket compression
	Slide 151: Pocket compression
	Slide 152: Workspace compaction
	Slide 153: Workspace compaction
	Slide 154: Workspace compaction
	Slide 155: The allocation request
	Slide 156: Pocket allocation (and deallocation)
	Slide 157: Pocket allocation (and deallocation)
	Slide 158: Pocket allocation (and deallocation)
	Slide 159: Pocket allocation (and deallocation)
	Slide 160: Next allocation request
	Slide 161: Walk workspace
	Slide 162: Walk workspace
	Slide 163: Walk workspace
	Slide 164: Walk workspace
	Slide 165: Walk workspace
	Slide 166: Walk workspace
	Slide 167: Walk workspace
	Slide 168: Walk workspace
	Slide 169: Compress and compact
	Slide 170: Compress and compact
	Slide 171: Worspace expansion
	Slide 172: Worspace expansion
	Slide 173: Worspace expansion
	Slide 174: Pocket allocation algorithm
	Slide 175: Reducing workspace allocation
	Slide 176: Useful tools
	Slide 177: Useful tools
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183: The workspace
	Slide 184: Questions?

