Morten was visiting Dyalog clients and forwarded a request: Can we have the Cholesky decomposition?
If A
is a Hermitian, positive-definite matrix, its Cholesky decomposition [0] is a lower-triangular matrix L
such that A ≡ L +.× +⍉L
. The matrix L
is a sort of “square root” of the matrix A
.
For example:
⎕io←0 ⋄ ⎕rl←7*5 ⋄ ⎕pp←6
A←t+.×⍉t←¯10+?5 5⍴20
A
231 42 ¯63 16 26
42 199 ¯127 ¯68 53
¯63 ¯127 245 66 ¯59
16 ¯68 66 112 ¯75
26 53 ¯59 ¯75 75
L←Cholesky A
L
15.1987 0 0 0 0
2.7634 13.8334 0 0 0
¯4.1451 ¯8.35263 12.5719 0 0
1.05272 ¯5.12592 2.1913 8.93392 0
1.71067 3.48957 ¯1.81055 ¯6.15028 4.33502
A ≡ L +.× +⍉L
1
For real matrices, “Hermitian” reduces to symmetric and the conjugate transpose +⍉
to transpose ⍉
. The symmetry arises in solving least-squares problems.
Some writers asserted that an algorithm for the Cholesky decomposition “cannot be expressed without a loop” [1] and that “a Pascal program is a natural way of expressing the essentially iterative algorithm” [2]. You can judge for yourself whether the algorithm presented here belies these assertions.
The Algorithm [3]
A recursive solution for the Cholesky decomposition obtains by considering A
as a 2-by-2 matrix of matrices. It is algorithmically interesting but not necessarily the best with respect to numerical stability.
Cholesky←{
⍝ Cholesky decomposition of a Hermitian positive-definite matrix
1≥n←≢⍵:⍵*0.5
p←⌈n÷2
q←⌊n÷2
X←(p,p)↑⍵ ⊣ Y←(p,-q)↑⍵ ⊣ Z←(-q,q)↑⍵
L0←∇ X
L1←∇ Z-T+.×Y ⊣ T←(+⍉Y)+.×⌹X
((p,n)↑L0)⍪(T+.×L0),L1
}
The recursive block matrix technique can be used for triangular matrix inversion [4], LU decomposition [5], and QR decomposition [6].
Proof of Correctness
The algorithm can be stated as a block matrix equation:
┌───┬───┐ ┌──────────────┬──────────────┐
│ X │ Y │ │ L0 ← ∇ X │ 0 │
∇ ├───┼───┤ ←→ L ← ├──────────────┼──────────────┤
│+⍉Y│ Z │ │ T+.×L0 │L1 ← ∇ Z-T+.×Y│
└───┴───┘ └──────────────┴──────────────┘
where T←(+⍉Y)+.×⌹X
. To verify that the result is correct, we need to show that A≡L+.×+⍉L
and that L
is lower triangular. For the first, we need to show:
┌───┬───┐ ┌──────┬───────┐ ┌────────┬────────┐
│ X │ Y │ │ L0 │ 0 │ │ +⍉L0 │+⍉T+.×L0│
├───┼───┤ ≡ ├──────┼───────┤ +.× ├────────┼────────┤
│+⍉Y│ Z │ │T+.×L0│ L1 │ │ 0 │ +⍉L1 │
└───┴───┘ └──────┴───────┘ └────────┴────────┘
that is:
(a) X ≡ L0 +.× +⍉L0
(b) Y ≡ L0 +.× +⍉ T+.×L0
(c) (+⍉Y) ≡ (T+.×L0) +.× +⍉L0
(d) Z ≡ ((T+.×L0) +.× (+⍉T+.×L0)) + (L1+.×+⍉L1)
(a)
holds because L0
is the Cholesky decomposition of X
.
(b)
is seen to be true as follows:
L0 +.× +⍉ T+.×L0
L0 +.× +⍉ ((+⍉Y)+.×⌹X)+.×L0
definition of T
L0 +.× (+⍉L0)+.×(+⍉⌹X)+.×Y
+⍉A+.×B ←→ (+⍉B)+.×+⍉A
and +⍉+⍉Y ←→ Y
(L0+.×+⍉L0)+.×(+⍉⌹X)+.×Y
+.×
is associative
X+.×(+⍉⌹X)+.×Y (a)
X+.×(⌹X)+.×Y X
and hence ⌹X
are Hermitian
I+.×Y
associativity; matrix inverse
Y
identity matrix
(c)
follows from (b)
by application of +⍉
to both sides of the equation.
(d)
turns on that L1
is the Cholesky decomposition of Z-T+.×Y
:
((T+.×L0)+.×(+⍉T+.×L0)) + (L1+.×+⍉L1)
((T+.×L0)+.×(+⍉T+.×L0)) + Z-T+.×Y
((T+.×L0)+.×(+⍉L0)+.×+⍉T) + Z-T+.×Y
(T+.×X+.×+⍉T) + Z-T+.×Y
(T+.×X+.×+⍉(+⍉Y)+.×⌹X) + Z-T+.×Y
(T+.×X+.×(+⍉⌹X)+.×Y) + Z-T+.×Y
(T+.×X+.×(⌹X)+.×Y) + Z-T+.×Y
(T+.×I+.×Y) + Z-T+.×Y
(T+.×Y) + Z-T+.×Y
Z
Finally, L
is lower triangular if L0
and L1
are lower triangular, and they are by induction.
A Complex Example
⎕io←0 ⋄ ⎕rl←7*5
A←t+.×+⍉t←(¯10+?5 5⍴20)+0j1ׯ10+?5 5⍴20
A
382 17J131 ¯91J¯124 ¯43J0107 20J0035
17J¯131 314 ¯107J0005 ¯60J¯154 26J¯137
¯91J0124 ¯107J¯05 379 49J0034 20J0137
¯43J¯107 ¯60J154 49J¯034 272 35J0103
20J¯035 26J137 20J¯137 35J¯103 324
L←Cholesky A
A ≡ L +.× +⍉L
1
0≠L
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1
A Personal Note
This way of computing the Cholesky decomposition was one of the topics of [7] and was the connection (through Professor Shlomo Moran) by which I acquired an Erdős number of 2.
References
- Wikipedia, Cholesky decomposition, 2014-11-25.
- Thomson, Norman, J-ottings 7, The Education Vector, Volume 12, Number 2, 1995, pp. 21-25.
- Muller, Antje, Tineke van Woudenberg, and Alister Young, Two Numerical Algorithms in J, The Education Vector, Volume 12, Number 2, 1995, pp. 26-30.
- Hui, Roger, Cholesky Decomposition, J Wiki Essay, 2005-10-14.
- Hui, Roger, Triangular Matrix Inverse, J Wiki Essay, 2005-10-27.
- Hui, Roger, LU Decomposition, J Wiki Essay, 2005-10-31.
- Hui, Roger, QR Decomposition, J Wiki Essay, 2005-10-30.
- Ibarra, Oscar, Shlomo Moran, and Roger Hui, A Generalization of the Fast LUP Matrix Decomposition Algorithm and Applications, Journal of Algorithms 3, 1982, pp. 45-56.